
THE OPTIMAL ROS-BASED SYMMETRIC PHASE-ONLY FILTER  
FOR FINGERPRINT VERIFICATION 

 
Xin Shuai1, Chao Zhang1 and Pengwei Hao1,2

1State Key Laboratory of Machine Perception, Peking University, Beijing, 100871, China 
2Department of Computer Science, Queen Mary, University of London, E1 4NS, UK 

Email: c.zhang@pku.edu.cn 
 

ABSTRACT 
 
Symmetric phase-only filter (SPOF) has been widely applied 
to image registration and recognition, and has been proved 
efficient for fingerprint verification. Fingerprint images have 
a characteristic that the dominant information is concentrated 
in an elliptic frequency band of their ridges in low frequency 
domain. However, the existent fingerprint verification 
methods based on SPOF do not take this characteristic into 
account. To improve the performance of SPOF for fingerprint 
recognition, an appropriate region of support (ROS) can be 
used to set the least significant frequency region to zero. By 
means of theoretical and experimental analysis, we have 
found the optimal ROS for SPOF that achieves the best 
discrimination power among all the possible ROSs. 
Experiments show that our optimal ROS-based SPOF is more 
efficient than the method of band-limited SPOF (BLPOC). 
  
Index Terms —symmetric phase-only filter, region of sup-
port, matched filters, biometrics, fingerprint identification 
 

1. INTRODUCTION 
 
A fingerprint is a pattern of ridges and furrows on the surface 
of a fingertip. Its uniqueness and stability make fingerprint 
verification the most popular biometric technique for personal 
identification. Typical approaches of automatic fingerprint 
matching in the literature can be roughly classified into two 
categories, i.e. minutiae-based and correlation-based [1, 2]. 

Most fingerprint identification systems employ minutiae-
based approaches. In these approaches, minutiae points such 
as ridge endings and bifurcations are extracted from ridge 
lines, and line orientation or the number of lines between 
every pair of minutiae points is calculated. These features are 
used for fingerprint verification [2]. However, minutiae-based 
approaches depend heavily on the extraction of reliable minu-
tiae features. It has been known that fingerprints verification 
is a very difficult task if only minutiae-based techniques are 
applied due to various skin conditions or poor quality of im-
ages [3]. 

Unlike minutiae-based methods, correlation-based ap-
proaches extract features directly from the raw image. More 
discriminatory features can be obtained than the minutiae-
based features since a gray-level image contains much richer 
information. When the image quality is too poor to extract 
reliable minutiae, correlation-based methods may be the only 

choice. It has been proved that correlation-based technique is 
more effective for identifying poor quality fingerprints [3]. 
The symmetric phase-only filter (SPOF) method is a correla-
tion-based technique which has been demonstrated to be ef-
fective for fingerprint verification [4]. However, the original 
SPOF method has no noise suppression ability since it is a 
unit-magnitude filter (all-pass filter) operating on the spectral 
phase of the input image, and this property leads to bad dis-
crimination capacity. To address this problem, band-limited 
SPOF (BLSPOF, called “BLPOC” in [5]) has been defined. 
As known to all, a fingerprint image has a special structure in 
the frequency domain that contains a significant elliptic band, 
but BLSPOF has not figured out the desirable region of sup-
port (ROS) of SPOF for fingerprint verification, thus cannot 
obtain a desirable result. 

In this paper, an optimal ROS-based SPOF for finger-
print verification is proposed. Firstly our discussion focuses 
on the correlation performance measure (SNR) to determine 
ROS. We show that different frequency components have 
different discrimination capabilities which are related to the 
spectral magnitude. Then an optimal ROS is selected from a 
table of discrimination capabilities of the ROS candidates. 
Finally, our approach to determine ROS for fingerprint verifi-
cation is presented. 

This paper is organized as follows: Section 2 gives the 
definition of POF and SPOF. Section 3 is about the selection 
of the optimal ROS of SPOF for fingerprint matching via 
theoretical and experimental analysis. Section 4 presents a set 
of experimental results. In Section 5, we end with some con-
clusions. 
 

2. PHASE-ONLY FILTER AND SYMMETRIC 
PHASE-ONLY FILTER  

 
The classical matched filter has the limitation that the output 
of the filter is primarily dependent on the energy of the image 
rather than on its spatial structures. Furthermore, the matched 
filter output around its maximum is so broad that the peak 
cannot be easily located. The phase-only filter (POF) was 
proposed to solve such problems [4, 5, 6]. 

Consider two N1 N2 images, f(n1, n2) and g(n1, n2). Let 
F(k1, k2) and G(k1, k2) be the 2D discrete Fourier transforms 
of the two images. In the definition of POF which uses the 
spectral phase of g(n1,n2) as the filter’s transfer function, the 
output is the 2D inverse discrete Fourier transform of 
RPOF(k1,k2) which is given by 
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Fig. 1  Comparison between SPOF and classical matched filter. (a) 
and (b) are two identical fingerprint impressions, (c) SPOF be-
tween (a) and (b), (d) classical matched filter between (a) and (b). 
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where G*(k1,k2)is the complex conjugate of G(k1,k2). 
A further improvement of POF can be achieved by ex-

tracting and correlating the phase of both f(n1,n2) and 
g(n1,n2). This is done by a nonlinear filter called SPOF with 
an output given by the 2D IDFT of the function 
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   We can observe that SPOF is taken as a POF operating 
on the image with the phase of f(n1,n2) and unit-magnitude.  

Since the spectral phase preserves the location of ob-
jects in the image but is insensitive to the image energy, a 
SPOF yields a much sharper peak than the classical matched 
filter when the two images are similar and a significantly 
lower peak when the two images are not similar. This prop-
erty of SPOF is shown in Fig.1. Thus, the SPOF exhibits 
better discrimination capability. 

Although SPOF can yield sharper correlation peak 
compared to a matched filter, it provides lower output SNR 
since a matched filter is designed to maximize the output 
SNR. As described before, SPOF is a filter operating on the 
phase of the input image with a magnitude of 1 at all fre-
quencies. It does not suppress any noise in the signal. To 
improve the noise tolerance of the SPOF, we will find the 
optimal ROS for SPOF in the next section. 
 

3. THE OPTIMAL ROS FOR SPOF 
 
As explained in the above, SPOF is actually an all-pass filter 
for complete frequency range of the input image’s spectral 
phase. We can observe from the frequency domain of a fin-
gerprint image that significant information of the image is 
concentrated in an elliptic frequency band of its ridge lines, 
and the high frequency domain includes meaningless noise. 
Thus an all-pass filter that does not distinguish the meaning-
ful information from noise will lead to a lower correlation 
peak. 

One way to remove noise for a SPOF is to set some fre-
quencies of the filter to zero [6]. The set of frequencies in 
which the filter magnitude is non-zero is called the region of 
support (ROS). BLSPOF method automatically detects the 
borders of ROS simply by calculating the mean values of 
the k1-axis and k2-axis projection of the spectral magnitude 
respectively, and eliminates the higher frequency compo-
nents beyond the rectangle region. We believe that the ROS 
determination method proposed in BLSPOF does not give 

the optimal ROS thus does not achieve a desirable discrimi-
nation capability. In this section, a theoretical and experi-
mental analysis will be presented to show how to find a bet-
ter optimal ROS for SPOF. 

3.1. SNR analysis of SPOF with ROS 

Signal-to-noise ratio (SNR) is an important metric for de-
signing correlation filters. It measures the noise sensitivity 
of the filters. To find an optimal ROS for SPOF, it is a natu-
ral way to find the region that maximizes the output SNR of 
the filter [6]. In order to obtain the expression of SNR, we 
switch back to 1D notation for simplicity. 
        Let fi(t) denote the input signal and h(t) denote the im-
pulse response of the correlation filter. We will consider the 
effects of additive noise n(t) only for simplicity. Thus the 
problem is simplified as choosing between the two follow-
ing hypotheses: 
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where f(t) denote the transmitted signal. The noise n(t) is 
modeled as a wide sense stationary (WSS) random process 
with zero mean and power spectral density (PSD) Pn(f). 
        A desirable correlation filter should make the average 
maximal value rmax large (under hypothesis H1) and make 
the average noise-included variance as small as possible. So 
the output SNR can be defined as 
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Without loss of generality we may assume that fi(t) contains 
the un-shifted signal f(t) and the noise, and thus the filter 
output achieves its maximal value at the origin, which is 
denoted as r(0). Then the numerator of Eq.(4) can be simpli-
fied as 
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where f(t) and h(t) are assumed to be real. Since the noise 
n(t) is WSS, we can express the denominator of Eq.(4) as 
        dffHfPr n
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Using Eq.(5) and Eq.(6), SNR is obtained as follows: 
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        Now we return to our task to find the optimal ROS for 
SPOF that maximizes the output SNR given in Eq.(7). Due 
to the nonlinearity of SPOF, we take it as a POF operating 
on an image with unit-magnitude (we have discussed in Sec-
tion 2). Thus the problem is to find the optimal ROS for 
POF with unit-magnitude input.  

Let denote the set of frequencies for which the filter 
magnitude is non-zero. Then the SNR is given as 
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where Fk and Pk are samples of |F(f)| and Pk(f) sampled at 
uniform intervals of f . To determine the region that maxi-
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mizes the SNR in Eq.(8), we re-index the frequencies such 
that the ratio Fk /Pk is sorted. Remember that the input is 
unit-magnitude, i.e. 1kF , so the ratio sorting refers to 
sorting just Pk as 
                                                           (9) 
where  is the total number of frequency samples. It is 
proved that the optimal R includes all the frequencies with 
an index lower than n  if it includes frequency n from the 
sorted list in Eq.(9). This means that the optimal R includes 
M frequency samples with the lowest noise PSDs. The prob-
lem is: How to determine M to obtain the best performance 
of SPOF?  

NPPP 21

N

3.2. Experimental analysis of SPOF with ROS 

Now the task turns to finding the frequencies with low noise 
PSD. How to measure the effect of the noise? An experi-
ment which employs equal error rate (EER) as a criterion 
has been designed. EER is defined as the error rate where 
the false acceptance rate (FAR) and the false reject rate 
(FRR) are equal. When a frequency component mainly con-
tains meaningful information for the discrimination task, it 
should show us some discrimination capability, and gives a 
low EER as a result. On the contrary, when a frequency 
component mainly contains noise, its result of EER should 
be around 50% (i.e. poor discrimination capability).  
      FVC 2002 DB1 which consists of 800 impressions pro-
vided by 100 fingers was used for our experimental analysis. 
For the FRR test, each impression of each finger is matched 
against all other impressions of the same finger. For the 
FAR test, the first impression of each finger is matched 
against the first impression of all other fingers. So there are 
totally 2800 genuine attempts and 4950 impostor attempts. 
Alignment has been done and common area has been ex-
tracted for each matching pair without any pre-processing. 
In all of our experiments, the FFT outputs are set to be 512

512 points with the coordinate origin in the center. In 
order to extract the ROS composed of frequency samples, 
we use a mask of 512 512 with an annular area of value 1 
and the other area to be 0. Fig.2 shows a mask operated on a 
spectrum. (Rmin, Rmax) can be adjusted to form different 
masks. When multiplying the mask to amplitude spectrum 
of an image, the annular area with value 1 is extracted.  
      To analyze the frequency components, we perform 
matching tests with masks each with 10 points wide non-
zero band. The masks are given by 

24,1,0),1010,10(),( maxmin iiiRR i               (10) 
and the results are illustrated in Fig.3. 
      Experiment results show that for the frequency bands 
higher than 90 points, the EERs are too high (higher than 
30%) to indicate any discrimination capability. We also pre-
sent the mean value of magnitude sum of each frequency 
band in Fig.3. It can be observed that frequency components 
with good EER results also have significant spectral magni-
tude. The best EER results fall in bands of (40,50), (50,60) 
and (60,70), which are also the frequencies of the magnitude 
peaks. This is because these components include the fre-
quency  range of  the fingerprint ridge lines.   It implies that  

Rmax

Rmin

(a)                                                             (b)                                                                   (c)  
Fig. 2 Mask operated on a spectrum. (a) a frequency spectrum, (b) 

mask (Rmin, Rmax), (c) result of mask operation. 
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Fig. 3 Relation between verification rate (EER) and the spectral 
magnitude of different frequency range with an interval of 10. 

Table 1 Performance comparison for SPOF with different ROS 
EER(%) Rmin= 0 10 20 30 40
Rmax=70 7.0 7.2 7.6 7.9 8.0

80 6.2 6.2 6.4 6.2 6.6
90 5.4 5.6 5.7 5.9 6.1

100 5.7 5.9 6.0 6.0 6.2
110 6.3 6.3 6.0 6.1 6.5
120 7.0 6.9 6.4 6.3 6.9
130 7.5 7.3 7.4 6.8 7.2
140 8.9 8.4 7.8 7.7 7.8
150 11.2 11.1 10.1 9.7 9.6

  

we can determine ROS by detecting the peak of the magni-
tude sum of each frequency band.       

Another experiment has been carried out to show how 
to select the optimal ROS that leads to the overall best EER. 
From the first experiment we learn that frequency band 
(40,70) shows good discrimination capability among all 
frequency components, thus the optimal ROS should include 
these samples of frequency. We tested all the possible ROS 
and obtained the EER results given in Table 1. It can be 
clearly observed from Table 1 that the best result is achieved 
with the ROS (0, 90). As the region changes, EER turns 
higher accordingly. So this region is the optimal ROS that 
we are looking for.  

Actually, the frequency components of band (0,90) can 
be classified into two parts. Band (40,90) is the range corre-
sponding to the fingerprint ridge lines. This part contains the 
information of ridge structure such as the flow directions. It 
is the most important information of which a correlation 
filter makes use, and it gives the lowest EER. The other part 
is the frequency ranges lower than 40. This range mainly 
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(a)                                       (b)                                      (c)                                     (d)  
Fig. 4  2D IDFTs of different frequency range. 

(a) the original image, (b), (c) and (d) are 2D IDFTs of frequency 
range (0, 10), (0, 30) and (40, 70), respectively. 

 
includes the information of the changes of gray-level and 
shows the discrimination capability of low frequencies. 
Fig.4 shows the 2D IDFTs of different frequency ranges. 

3.3. Method of optimal ROS determination 

As we know, the optimal ROS for SPOF is composed 
of the frequency ranges of the fingerprint ridge lines and the 
lower frequency components. Therefore, the optimal ROS 
can be determined by the outer boundary of the frequency 
range corresponding to the ridge lines. To detect this bound-
ary, we use radial spectral magnitude distribution function 
D(r) defined as follows [7]: 
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where Cr is the set of the pixels that satisfy the function 
k1

2+k2
2=r2. N{Cr} is the number of the elements of the set Cr. 

Besides the sharp peak at the origin, D(r) has another crest 
corresponding to the dominant frequency of the fingerprints. 
     Thus the optimal ROS of an input image f(n1, n2) can be 
determined by an algorithm consists of the following steps: 

1. Compute the 2D DFT F(k1, k2) of f(n1, n2), 
2. Compute D(r) of F(k1, k2), 
3. Smooth D(r) by proper Gaussian filter, 
4. Detect the two local maximum values V1

max and V2
max 

and the local minimum value V 
min between the two 

maximums of the smoothed function, 
5. Set the border of the optimal ROS as 2V2

max-V 
min. 

 
4. EXPERIMENTAL RESULTS 

 
Our experiment has been conducted on the database FVC 
2002 DB1, which we have introduced in Section 3.2. Equal 
error rate (EER) is used for the performance evaluation. 
Raw images without any preprocessing were used in our 
experiment. We carried out experiments by original SPOF, 
BLSPOF and SPOF with optimal ROS in order to compare 
the performance of these correlation filters. Before the op-
eration of the filters, we aligned each pair of images and 
extracted their common regions. 
      Three experiment results are shown in Fig.5. EER result 
of experiments using original SPOF, BLSPOF and SPOF 
with optimal ROS are 11.84%, 7.57% and 5.43% respec-
tively. It can be seen that the proposed optimal ROS 
achieved the best performance among the three filters.  
 

5. CONCLUSIONS 
 
This  paper presented  the optimal ROS-based SPOF for fin- 
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Fig. 5  ROC curves depicting matching performance. 

 
gerprint verification. By means of theoretical and experi-
mental analysis, the optimal ROS of SPOF was found to be 
the interior of the outer boundary of the frequency band cor-
responding to the fingerprint ridge lines. We also proposed 
the algorithm to determine the optimal ROS in practice.  
      Experiments have shown that the performance of SPOF 
with our optimal ROS is more efficient than that of 
BLSPOF (BLPOC). 
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