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ABSTRACT

In this paper we propose a novel method of applying motion
estimation techniques to human authentication by iris
matching. By exploiting the inherent differences in vector
fields generated by comparing same-class and different-
class irises, good matching performance was obtained. The
method was applied to 600 images of 150 eyes from the
Bath database. The best settings of several parameters were
determined through experimental minimization of equal
error rate (EER), which was estimated from the matching
and nearest nonmatching distributions. The effect of iris
rotation was studied through circular shifts and seen to have
minimal effects on match/nonmatch scores. The standard
deviation of the X-vector data was found to give best
performance with 100% Correct Recognition Rate (CRR)
and a flat Receiver Operating Characteristics (ROC)
indicating no false accepts or rejects within the data with an
estimated EER of 0.007. Images compressed with
JPEG2000 at 0.5 bpp were similarly processed resulting in
an EER of 0.014 at a normalized image size of 1536 bytes.

Index Terms— Biometrics, Iris Recognition, Motion
Estimation, Pattern Analysis.

1. INTRODUCTION

With iris recognition becoming a candidate for use in multi-
modal biometric systems [1, 2], the use of handheld and
desktop based iris acquisition systems are becoming more
prevalent both for enrolment and later authentication. With
reduced control over human factors and more reliance on
operator skill, the need for robust rotation-invariant iris
recognition is fast gaining prominence. Pioneering work by
Daugman [3] and other iris classification techniques based
on various intensity and frequency transforms [4-7] have
assumed a restricted range of rotation due to head tilt and
ocular torsion. Circular shift compensation has previously
been provided by storing multiple templates computed at
varying degrees of rotation during enrolment and compared
separately at the matching stage to produce the closest
match. For non-wall-mounted cameras, accidental mis-
alignment during capture may lead to rotated images even
when the subject is looking straight into the lens.

The use of motion estimation has not been previously
applied to the field of iris recognition. The basic premise of
motion estimation in video sequences is that consecutive
video frames are similar to each other except for changes
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induced by a few objects moving within the frames [8]. In
the case of iris matching, the underlying textural similarities
between images captured at different times lend themselves
to matching through the same technique. After localization
and normalization, matching irises are expected to produce
similar motion vectors, the motion direction being that of
the direction of iris rotation. On the other hand, comparing
irises from different individuals are expected to give rise to
random vector fields. By exploiting these differences and
using an efficient classification metric, good performance
can be obtained for verification and identification purposes.
We propose a rotation-invariant classification technique
based on matching and nonmatching motion vector analysis.
The paper is subdivided as follows. Section 2 presents a
basic overview of motion estimation followed by the
proposed method and underlying procedures in Section 3. In
Section 4, the experiments are described and results
tabulated. Finally, conclusions are drawn in Section 5.

2. MOTION ESTIMATION

Motion estimation is a key element of video compression.
Block Matching (BM) is the most common method of
carrying out motion estimation, where each macroblock in
the new frame is compared with displaced regions of the
same size from the previous frame, and the displacement
which results in the minimum error is selected as the best
motion vector for that macroblock [8]. Blocks are compared
within a predetermined search area using some error metric.

The three key issues in any motion estimation problem
are the search area, search process and error metric. Block
searching can be very computationally demanding if all
shifts of each macroblock are analyzed. In many cases the
objects in two images do not have large translational
movements with respect to each other, so the search area is
usually restricted to lower the computational cost. Many
other techniques have been proposed to solve the problem of
determining the best match at the lowest computational cost
[9]. Commonly used error metrics include the sum of
absolute differences (SAD), mean of absolute difference
(MAD) and minimum squared error (MSE).

3. PROPOSED METHOD
The primary objective of iris coding is to obtain good inter-
class separation between the authentic users and imposters.

Here, we discuss the new method in detail with its
parameters optimized for best system performance.
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Fig 1. Iris Pre-Processing. (a) Original Image; (b) Localized Image;
(c) Unwrapped Image; and (d) Enhanced Image.

3.1. Localization and Normalization

Prior to feature extraction, the pupil-iris & iris-sclera
boundaries are localized and the iris portion segmented out
from the eye image. To reduce the effects of variability due
to pupil dilation and camera-to-eye distance, the iris is
unwrapped onto a fixed rectangular format of size 512
pixels in the horizontal (radial) direction and 80 pixels in the
vertical (radial) direction. This stage also takes care of the
deformations caused by the yaw and pitch angles. For
coding, the 48 rows nearest the pupil are used to mitigate the
effect of eyelashes and eyelids. The remaining eyelids and
other non-iris portions are masked out by replacing them
with black. The unwrapped iris intensity is then normalized
by removing the variations in background illumination from
it in order to reduce the effects of non-uniform lighting
conditions. The process is illustrated in F ig. 1 above.
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Fig. 2. Quiver plots obtained by motion estimation between two
normalized images a) Matching and b) Nonmatching.

3.2 Motion Estimation & Feature Extraction

The motion estimation between two normalized iris images
is carried out by taking successive blocks of size BIxBI with
a 50% overlap from the first image and computing the
vector to the nearest corresponding block in the second
image within a Nk pixel neighborhood around it. The block
matching criteria is the minimum normalized Mean
Absolute Difference (MAD) between the pixels in the two

blocks. Fig. 2 shows quiver plots of the X- and Y-
components of the vectors. A typical match result from
comparing two images of the same iris is shown in Fig. 2a.
Here, it is evident that the vector magnitudes are small and
their orientations are highly correlated. Variation will
primarily be due to localization error and non-elastic
deformations of the pupil. On the other hand, the motion
vectors from non-matching irises are large and random as
shown in Fig. 2b. These vector distributions are also
illustrated by means of histogram plots in Fig. 3. While the
matching X and Y-vector histograms have a distinct peak
and fast decreasing tails, the non-matching ones are more
uniform and evenly spread out. These relatively uniform
histograms are thus least affected by iris shifts which cause
the X-vector histogram peak to undergo a shift equal to the
pixel shift between the images compared. The Y-Vector
histogram is not affected due to iris rotations.

1000 1000

Frequency
a 2 °
& 2 g
8 S 8
Frequency
a 9 ©
8 2 g
8 8 8

N
8
s

N

8

s

-6 -4 -2
X Vector Ma(ch

(@

-2 0 2
Y-Vector Match

(b)

4

6

Frequency
3
Frequency
@
g

-6 -4 -2 0 -2 -4 -6 -6 -4 -2 0 2 4 6
X-Vector Match Y-Vector Match

(c) (d)
Fig. 3. Typical a) X and b) Y-Vector histograms for two matching
irises; ¢) X and d) Y-Vector histograms for two non-matching
irises for Nh = 8 and B/ = 8.

For classification, the vector information is converted
into numerical scores for comparison against a cutoff
threshold to make a match/non-match decision. A number of
metrics which are independent of the position of the vector
histogram peaks were considered as classification metrics.
These were entropy, standard deviation and kurtosis of the
X and Y-Vector distributions defined as follows:

Entropy: H Z p xk 10g2( ( ))
J 2
Std. Dev: G(X):\/ﬁk;\,h(xk —)_c)
Kurtosis: k(x): 3 M
k=—Nn O
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Here, p(x;) is the probability of occurrence of an X
vector with value &, where the value of & can vary from —Nh
to Nh, where Nh is the size of the search neighborhood, i.e.
where the search window is a square of width 2NA+1 pixels.
With Nh = 12, the ideal match and total mismatch values for
entropies over this range would be 0 to 4.64 respectively,
while those for standard deviation would be 0 and 7.21. For
Kurtosis a perfect match would give an infinite value, and
1.79 for a random mismatch.

4. EXPERIMENTS AND RESULTS
4.1 Evaluation on raw normalized iris images

To evaluate our method, 600 normalized images of 150 eyes
were taken from the Bath database [10]. Of the four images
per class, one was enrolled and the remaining three were
used as candidates for matching against the 150 enrolled
images. Block sizes B/ of 4, 8, 12 and 16 pixels were tested
with search distance Nh of 4, 8, 12 and 16 pixels. In all
cases the blocks tiled the image with 50% overlap. For
classification, the entropy, standard deviation and kurtosis
of the X and Y-Vectors were calculated. The matching
distribution for each metric was modeled by a Gamma
distribution, and the nearest non-match for each eye was
modeled by a Weibull distribution. Equal Error Rates (EER)
were determined from the overlap of these distributions.
This method of predicting the EER was first proposed in [7]
as a practical, stringent and robust evaluation of biometric
performance. The results obtained are tabulated in Table 1.

Clsfr Entropy Std. Dev. Kurtosis
Bl | Nh X Y X Y X Y
4 | 0.111 0.220 0.044 0.177 0.923 0.769
4 8 | 0.070 0.148 0.011 0.051 0.943 0.871
12 | 0.061 0.128 0.011 0.020 0.956 0.930
16 | 0.058 0.124 0.016 0.019 0.954 0.950
4 10.194 0246 0.151 0200 0.848 0.936
3 8 | 0.043 0.123 0.018 0.030 0.615 0.671
12 | 0.036 0.047 0.015 0.023 0.899 0.912
16 | 0.034 0.042 0.023 0.025 0.898 0.934
4 1 0.063 0289 0.085 0.282 0.706 0.520
12 8 | 0.021 0.132 0.014 0.066 0.805 0.644
12 | 0.012 0.082 0.007 0.020 0.784 0.694
16 | 0.011 0.057 0.014 0.010 0.792 0.719
4 1 0.131 0478 0373 0422 0.404 0.306
16 8 | 0.073 0.290 0.071 0.171 0.533 0.475
12 | 0.056 0222 0.040 0.064 0.513 0.522
16 | 0.049 0.190 0.042 0.037 0.546 0.566

Table 1. Equal Error Rates (EER) for different classifiers for a
range of search distances N4 and block sizes BI.

From Table I, we observe that in all cases the X motion

vectors provide a lower EER as than the Y ones. This may
be because the Y-vectors, being in the radial direction of the
iris are more susceptible to pupil dilation and segmentation
errors than the X-ones which are primarily affected by
circular shifts. Amongst the three classifiers tried, the best

discrimination is obtained using standard deviation. The best
parameter setting is achieved for the 12x12 block using only
X-motion vectors over a 12-pixel neighborhood using a
standard deviation based classifier. The matching and
nearest non-matching scores for this case are shown in Fig.
4a. The absence of overlap between these two distributions
indicates perfect identification or 100% Correct Recognition
Rate (CRR) over the test images, since no two images from
different irises produce a matching score lower than that
from either of the two same-class images. The non-matching
mean is lower than the theoretical value because the nearest
non-match is used in these results.
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Fig. 4. a) X-Vector Std. Dev. match and nearest non-match plots;
b) The same as PDFs with predicted EER = 0.007 (Gamma
Parameters: 1.09, 0.38; Weibull Parameters: 5.87, 0.08).

For verification, a threshold is set between the two
distributions determined by which of the two negatives,
false accept or reject, is less desirable. As in these results, a
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clear separation between the two cases indicates a flat ROC
Curve for the data used, with no false accepts or rejects for
some particular threshold. This is better illustrated in terms
of a probability distribution graph as shown in Fig. 4b where
the matching and nearest non-matching scores have been
modeled using the Gamma and Weibull distributions
respectively. The EER calculated from their overlap is
found to be 0.007 at Standard Deviation 5.27 so that if the
threshold were set at that value, the predicted false positive
and false negative rates would be equal to 0.007. Either of
these could be lowered at the expense of the other.

4.2 Performance on Compressed Images

The method would require normalized iris images to be
stored in a database, which at the resolution used here would
be 24,576 bytes for each registered iris. To see if this could
be reduced, all normalized images were compressed to 0.5
bits per pixel by JPEG 2000, i.e. 16:1 compression. These
were then used to estimate the effect of compression on the
system performance. The EER increased to 0.014, with the
matching and non-matching scores as shown in Fig. 5.
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Fig. 5. X-Vector Std. Dev. match and nearest non-match plots for
normalized images compressed by JPEG2000 at 0.5 bits per pixel

5. CONCLUSIONS

In this paper, we have described a novel method of using
motion estimation to achieve good iris classification, with
the standard deviation of motion vector components used as
the metric for classification. This classifier is inherently
rotation-invariant because it is independent of the position
and size of the peak of the histograms of vectors. From
experiments, it was also observed that the X vectors
produced lower EERs than the Y ones for the same set of
parameters. The Y vectors of the normalized image are in
the radial direction of the iris and are more susceptible to
pupil dilation and iris localization errors. The X vectors, on
the other hand, were primarily affected by circular shifts and

the classification process is independent of this. With 100%
CRR and a flat ROC curve, excellent identification and
recognition performance was obtained with no false accepts
or rejects on the experimental data. The EER predicted from
the overlap of the matching and nearest nonmatching
distributions was found to be 0.007.

The storage requirement for normalized iris images is
not large, but to reduce it the registered images could be
compressed with an increase in EER as has been
demonstrated. Motion estimation was once considered a
computationally costly process, but advances in algorithms
driven by video compression mean that it can be achieved
very efficiently [9].

A feature of the method is the very narrow non-matching
distribution compared to other iris coding methods. As the
tail of the matching distribution is quite flat, a threshold
could be set which gives a very low false positive rate with
only a slight compromise in the false negative rate.
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