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ABSTRACT

The expression levels of rod opsin and glial fibrillary acidic

protein (GFAP) capture important structural changes in the

retina during injury and recovery. Quantitatively measuring

these expression levels in confocal micrographs requires iden-

tifying the retinal layer boundaries and spatially correspond-

ing the layers across different images. In this paper, a method

to segment the retinal layers using a parametric active con-

tour model is presented. Then spatially aligned expression

levels across different images are determined by thresholding

the solution to a Dirichlet boundary value problem. Our anal-

ysis provides quantitative metrics of retinal restructuring that

are needed for improving retinal therapies after injury.

Index Terms— Active contours, layer segmentation

1. INTRODUCTION

Recent advances in cytochemical antibody labeling and con-

focal imaging have allowed biologists to observe protein ex-

pressions in relatively small tissue sections with greater detail.

In studying the mammalian retina and its response to injury,

antibody labeling can target specific tissue layers or cell pop-

ulations and reveal intricate structural changes that are closely

correlated with functional impairments.

In retinal detachment experiments (separating the neural

retina from the pigmented epithelium, Fig. 1), two important

antibody labels are used to target highly responsive proteins.

The first, rod opsin, is found in rod photoreceptor outer seg-

ments under normal conditions and is a good indicator of the

rod’s ability to detect light stimuli. The second, glial fibrillary

acidic protein (GFAP), is predominantly localized in Muller

cell endfoot regions under normal conditions (Fig. 2(a)). These

Muller cells have been found to be highly reactive to detach-

ment, undergoing hypertrophy and triggering a cascade of un-

desirable events leading to decreased neuronal stability and

potentially significant vision impairment [1].
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Fig. 1. Retinal detachment.

To quantify the extent of tissue restructuring during de-

tachment, both the changes in magnitude and location of the

antibody expression levels are important. In this paper, meth-

ods to detect retinal boundaries and to spatially correspond

antibody expression levels across different images are pre-

sented. The analysis is summarized in the following steps: 1)

For each image, the relevant retinal boundaries are detected

using a modified parametric active contour model previously

presented in [2]. 2) The retinal layers are divided along their

lengths into smaller corresponding sub-layers using the so-

lution of the Laplace equation with Dirichlet boundary con-

ditions. 3) The expression level of each sub-layer are com-

puted, and comparisons are made for retinas at different ex-

perimental stages. To the best of our knowledge, there has

been no previous quantitative analysis of retinal protein ex-

pression levels with spatial correspondence.

1.1. Retina Image Dataset

The dataset is composed of images of rod opsin (red channel)

and GFAP (green channel) labeled feline retina cross-sections

during four stages of retinal detachment. There are 28, 36, 13,

and 45 images of normal or undetached, 3-day, 7-day, and 28-

day detached retinas, respectively. Because imaging requires

destroying the tissue samples and the specimens are costly,

only the most interesting stages are fully explored, leading to

an unequal number of images in each stage. All images are

512 × 768 pixels in size. Fig. 2 shows examples of images

from each stage of retinal detachment.
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(a) normal (b) 3-day

(c) 7-day (d) 28-day

Fig. 2. Rod opsin and GFAP labeled images for each stage of

retinal detachment.

2. LAYER SEGMENTATION

The discrete dynamic contour model of Lobregt and Viergever

[3] is used to detect the retinal layer boundaries. The paramet-

ric framework is preferred because it easily allows for simple

open contours, which is the case with retinal layer boundaries.

Furthermore, a contiguous retinal layer may contain irregu-

lar patterns that would cause geometric methods to divide the

layer into several isolated blobs. Although there are numer-

ous other parametric active contour models that are likely to

perform equally well (see [4] and the references therein for an

overview), the most important aspect of using these models is

defining the external or data-driven force.

2.1. External Force

The external force formulation is based on the perpendicular

intensity profile matching framework proposed in [2], with

some important modifications. Consider a discrete contour

composed of N vertices at positions {vi| i = 1 . . . N}. At

vertex i, construct a perpendicular intensity profile Pi con-

sisting of M samples spaced at δ pixels apart such that

Pi(j) = I(vi + j · δ · n̂i) for − m ≤ j ≤ m, (1)

where I is the intensity image, n̂i is the unit normal at vi, and

m = (M − 1)/2 (Fig. 3). The external force at vi is calcu-

lated by matching the intensity profile Pi with a target profile

P t
i . The matching is done by defining an external energy dis-

tribution Ei as follows:

Ei(j) = w(j)
m∑

k=−m

|P t
i (k) − Pi(j + k)|, (2)

where w(j) = M/(M −2|j|) and −m ≤ j ≤ m. The energy

Ei can be considered as the normalized cumulative absolute

gray value differences [2], with w(j) normalizing the sum to

the proper number of profile samples involved in the summa-

tion. The external force is then defined as

f i
ext = −∂Ei

∂n̂i
(vi). (3)

This external force deforms the contour so that each vertex

converges toward a local minimum in the external energy dis-

tribution.

Fig. 3. Perpendicular profile Pi at vertex vi.

2.2. Target Profile and Training

In [2], the active contour is used to track moving boundaries

in an image sequence. The final profiles Pi’s of the converged

contour from the previous image are used as the target profiles

P t
i ’s in the current image. However, the segmentation of reti-

nal layers is performed on static images, requiring a different

definition for the target profiles P t
i ’s. Consequently, a training

stage is employed to obtain the target profiles.

Given a set of images under similar experimental condi-

tions, one image is selected, and the desired boundaries are

manually traced. Then at sample points along each boundary,

the perpendicular intensity profiles are computed and aver-

aged to obtain a single target profile P t for that boundary.

Hence, instead of having a different target profile for each

vertex, all vertices share the same target profile P t.

2.3. Modified External Force

Retinal detachment often causes large deformation in the lay-

ers, and thus obtaining good initializations for each boundary

is a challenging task. To make the algorithm more insensitive

to initialization, the lengths of P t and Pi should be large so

that an initialization far away from the target boundary will

still converge correctly. A long P t, however, will span across

neighboring layer boundaries, which can have a significant

effect on the profile matching energy Ei.

To limit the contributions from the neighboring bound-

aries, a windowing term α(k) is incorporated within the ex-

ternal energy definition (2). The modified energy is given by

Ei(j) = w(j)
m∑

k=−m

α(k)|P t(k) − Pi(j + k)|, (4)
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where α(k) = exp(−k2/σ2). The parameter σ is set to be ap-

proximately smaller than the minimum distance between any

two neighboring borders in the data set, which significantly

reduces the undesirable contributions from neighbors to the

overall profile matching energy.

2.4. Parameter Settings, Initialization, and Results

The algorithm is trained to detect the five boundaries separat-

ing: 1) the background and the ganglion cell layer (bg/GCL),

2) the GCL and the inner nuclear layer (GCL/INL), 3) the

INL and outer nuclear layer (INL/ONL), 4) the ONL and the

rod outer segment (ONL/OS), and 5) the OS and background

(OS/bg) (Fig. 4). Although the retina can be further divided

into more layers, retinal detachment causes cells in these lay-

ers to migrate, making the layer borders difficult even for a

trained biologist to differentiate.

(a) 3-day (b) 7-day

Fig. 4. Segmentation results for images in Fig. 2 (b) and (c).

The intensity from the histogram-equalized rod opsin and

GFAP channels are used to compute the external force. For

each vertex vi, two forces f i
rod and f i

GFAP are computed ac-

cording to (3) and equally summed to form the external force

f i
ext. The two forces are equally weighted because the mag-

nitudes of f i
rod and f i

GFAP are proportionally dependent on

the amount of protein signal (intensity) present at each layer.

The perpendicular profile parameters are set to M = 65
and δ = 5. These values ensure a long enough profile Pi so

that the algorithm is less sensitive to initialization. The win-

dow parameter σ is set to 30 pixels (see section 2.3). The

contour vertices were kept at approximately 15 pixels apart,

but this spacing, along with the choice of δ, is a matter of

computational efficiency. We have observed that with reason-

able initializations, these parameters can vary through a wide

range of values without noticeably affecting the results.

For initialization, a prior knowledge about the relative or-

dering of the retinal layers is incorporated. The two bound-

aries bg/GCL and OS/bg are found by initializing two con-

tours near the left and right edges of the image, respectively.

Next, the INL/ONL contour is initialized halfway between the

previous two borders. Then, the GCL/INL contour is initial-

ized at 10% of the distance from the bg/GCL to the INL/ONL

boundary. Finally, the ONL/OS contour is initialized at 10%

of the distance from the OS/bg to the INL/ONL boundary.

Due to space limitations, only two results are shown in Fig. 4.

2.5. Validation

The segmentation error is found by comparing the computed

boundaries with those obtain manually, i.e. with the ground

truth. Often point correspondences are needed in order to

measure the position error between the two discrete contours.

However in this validation, the position error is defined as the

thickness of the region(s) between the computed and ground

truth boundaries. Using the Eulerian PDE approach proposed

by Yezzi and Prince [5], the thickness between the computed

and ground truth boundaries is found without explicitly hav-

ing to find point correspondences between them.

Table 1. Layer segmentation error (mean±std pixels).

Normal 3-day 7-day 28-day

bg/GCL 2.2±2.1 5.2±4.7 2.1±2.2 3.8±3.6

GCL/INL 10.9±10.9 26.9±19.6 19.3±15.6 22.5±20

INL/ONL 5.4±3.9 5.2±6.1 5.0±5.9 7.3±7.4

ONL/OS 7.5±9.6 7.0±7.3 9.9±11.8 6.9±6.5

OS/bg 5.0±3.9 4.4±4.4 9.9±8.4 7.4±6.3

The validation is performed using images from the same

stage of retinal detachment. For each run, the process selects

one image for training, tests the algorithm on the rest of the

images, and computes the errors for that run. The process re-

peats, sequentially selecting a new training image each time

and testing on the rest, until all images have been selected

once. Table 1 summarizes the average and standard deviation

errors of all the segmentation results with the ground truth.

As is expected, the errors increase for the latter stages of de-

tachment due to pronounced physical changes in the retina.

The GCL/INL boundary is visually the most ambiguous and

has the largest errors. To provide some perspective, the av-

erage thicknesses of the GCL, INL, ONL, and OS for 7-day

detached samples are 98.9, 224.3, 232.6, and 78.0 pixels, re-

spectively, and the worst 7-day error (GCL/INL) is approxi-

mately 6% of the total GCL and INL thickness.

3. EXPRESSION LEVEL CORRESPONDENCE

Measures such as the percentage of GFAP penetration into the

ONL or the change in rod opsin labeling across the ONL are

important biologically and need the spatial correspondence

of the ONLs throughout the image set. Here, spatial cor-

respondence is achieved by dividing each layer into thinner

sub-layers along the layer length (Fig. 5) and making ordered,

one-to-one correspondences among the sub-layers from dif-

ferent images.

For each layer R with two boundaries ∂R0 and ∂R1, the

solution u to the Laplace equation

Δu = 0, with u(∂R0) = 0 and u(∂R1) = 1, (5)

provides a set of equal potential contours between the two

boundaries. The layer R is sliced along its length by thresh-

olding u at values between 0 and 1. If L sub-layers are needed,
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Fig. 5. ONL sliced into 15 sub-layers.

then each sub-layer ln is given by

ln = {u| (n − 1)Δu ≤ u < nΔu}, (6)

where Δu = 1/L and n = 1, 2, . . . L. Fig. 5 shows the result

of slicing the ONL layer into 15 sub-layers. After slicing,

the protein expression statistics, such as mean and standard

deviation, for each sub-layer can be easily computed.

4. PRELIMINARY BIOLOGICAL ANALYSIS

After segmentation, the GCL, INL, ONL, and OS layers in

all images are sliced into 8, 20, 20 and 10 sub-layers, respec-

tively. For each detachment stage, the average rod opsin and

GFAP expression levels in each sub-layers are computed and

plotted in Fig. 6. Note that the x-axis identifies the relative

locations in the retina where the expression values were com-

puted. There are two interesting trends in the figure. First,

the rod opsin level in the ONL increased shortly after detach-

ment, but after 28 days of detachment, this level decreased

toward the normal level. This may suggest that the rod cells

are recovering some of their normal functions without any in-

tervention such as reattachment. The second trend shows the

GFAP level in the INL and ONL increased throughout detach-

ment and remain high even after 28 days. This may suggest

that once the Muller cells undergo cytoskeletal changes, the

effects are difficult to reverse. Student t-tests with p = 0.05
confirmed that the differences in expression levels of these

two trends are significant.

5. CONCLUSION

In this paper, a method to analyze the expression levels of an-

tibody labeling in retinal confocal images is presented. First,

the retinal layer boundaries are detected using a modified para-

metric active contour framework adapted from [2]. Then each

retinal layer is sliced into thinner sub-layers by threshold-

ing the solution to Laplace’s equation with Dirichlet bound-

ary conditions. The slicing of the layers allows for the spa-

tial alignment of expression levels. Comparison of expres-

sion levels from the four stages of retinal detachment cor-

roborates prior qualitative observations [1] and may lead to

improvments in retinal reattachment therapies. Future work

includes preprocessing the image using texture classification
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Fig. 6. Mean antibody expression levels (top: rod opsin, bot-

tom: GFAP)

and incorporating more antibody channels to improve bound-

ary detection, as well as more in depth analysis of biological

trends.
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