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ABSTRACT

In this paper we present an adaptive B-spline smoothing algo-
rithm to reduce noise in biomedical images. The filter consists
of a convolution between the input image and an adaptive B-
spline kernel that varies its size according to the local image
characteristics. We show that this filter can be efficiently im-
plemented by taking advantage of the convolution and factor-
ization properties of B-splines. We tested our filter on phan-
toms and real images, obtaining very high noise reduction in
homogeneous areas with little degradation of the edges.
Keywords: biomedical images, restoration, B-splines, scale-

scene.

1. INTRODUCTION

The presence of noise is a common characteristic of virtually
all biomedical images. Noise can be of different types and
magnitudes, depending on the imaging modality and the par-
ticular acquisition conditions. Two examples of biomedical
images are magnetic resonance imaging (MRI) and small an-
imal X-ray computed tomography (micro-CT). In MRI, there
exists a trade-off between resolution and Rician noise. The
standard protocols for image acquisition with micro-CT use
low-dose X-rays and a moderate number of projections for the
reconstruction, resulting in images with considerable noise,
which can be modeled as Gaussian, and circle shaped arti-
facts. Thus, the need arises for efficient noise filtering and
image enhancement strategies, as pre-processing steps prior
to any high level segmentation or image understanding task.
A key requirement of these filters is that they must remove
noise without losing any relevant information contained in the
image. A number of different approaches have been described
in the literature during the past two decades. Among them, an
interesting class of filters relies on the convolution of the im-
age with scaled kernels [1]. In other words, the size of the
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kernel at each image position matches the underlying image
characteristics; i.e., wide kernels are used in smooth regions
and narrow ones in edges and highly textured areas of the im-
age. The common drawback of this type of algorithms is that
the computational complexity of the filter depends on the size
of the convolution kernel and it can be quite high on average.
In this paper, we present an adaptive smoothing method

with a fixed -scale independent- computational load. It uses
an estimate of the scale calculated at each pixel. This controls
the size of the B-spline kernel to be convolved at that posi-
tion. The filter is applied to micro-CT and MRI images with
satisfactory results.

2. ADAPTIVE FILTERING ALGORITHM

In this section, we first describe the scale computation algo-
rithm and then we derive an exact and efficient B-spline fil-
tering method.

2.1. Scale Computation

Our local scale estimation is based on a method described
in [1]: for each pixel, a hyper-ball grows until a certain in-
homogeneity criterion is fulfilled. This criterion can be ad-
justed depending on the expected noise level and the degree
of detail wanted in the image. In presence of diffuse borders,
normally caused by motion artifacts, non-zero scale values
might be estimated for pixels located at edges. That would
lead to unwanted diffusion of the edges. For that reason, we
added an extra step to the algorithm that detects this kind of
borders and forces the scale value to be null on them.

2.2. Scale-Based B-spline Filtering

We describe now the derivation of a general and efficient scale-
based B-spline filtering algorithm for bivariate functions. The
smoothed discrete output fo(b) at position b ∈ Z

2 is calcu-
lated as the convolution of the input function fi(x), x ∈ R

2

with a B-spline kernel βn2
(
x
a

)
evaluated at b

fo(b) =
(
fi(·) ∗ βn2

( ·
a

))
(b). (1)
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2.2.1. Operators and definitions

We introduce some operators and definitions that will be help-
ful to solve our problem. The scaled-centered B-spline can be
defined as a 2D extension of the one given in [2]:

1
a2
βn2

(x
a

)
= Δn2+1

a ∗ 1
a2n2+2

D−(n2+1)δ(x + sa,n2) (2)

whereΔn2+1
a (x) are the expanded finite differences given by

Δn2+1
a (x) =

(n2+1,n2+1)∑
k∈(0,0)

q(k)δ(x − ak)

with k = (k1, k2), q(k) =
∏2

i=1 q(ki) and q(ki) =
(
n2+1

ki

)
(−1)ki , D−1 is the continuous integral operator defined as

D−1h(x1, x2) =
∫ v1

−∞

∫ v2

−∞
h(v1, v2)dv1dv2

and sa,n2 = an2+1
2 (1, 1) is a shift required to center the B-

spline. Besides, we have that the integral of a B-spline is
given by the following expression [2]:

D−(n2+1)βn1(x) =
(
Δ−(n2+1)

1 ∗ βn1+n2+1
)

(x − s1,n1) (3)

where Δ−1
1 is the inverse finite-difference operator that can

be efficiently implemented by recursive filtering.

2.2.2. Derivation of the Algorithm

Using (1) and (2) , we can express the smoothing of an arbi-
trary continuous function fi(x) as the mixed convolution

fo(b) =
1

a2n2

(
Δn2+1

a ∗ v) (b), (4)

where the (n2 + 1)-integral of fi(x) is given by

v(x) = D−(n2+1)fi(x + sa,n2). (5)

At this point, we adopt a continuous domain formulation
by interpolating the input discrete image samples fi[k], k ∈
Z

2 and expressing them on a B-spline basis resulting in the
2D box-spline fi(x). Thus, we have fi(x) = (cδ ∗ βn1) (x)
where cδ(x) =

∑
k∈Z c[k]δ(x − k) are the B-spline interpo-

lation coefficients calculated as in [3]. We can then substitute
the 2D box-spline model on equation (4) and use the integral
equivalence (3) to finally obtain

fo(b) =
(M−1,M−1)∑

k∈(0,0)

g[b − k]wa(k)

where gδ = Δ−(n2+1)
1 ∗ cδ are the (n2 + 1)-times integrated

B-spline coefficients,

fi� (bn1)−1 �c
Δ−(n2+1)

g
wai

�fo(b)

�
wa(k,p)

Fig. 1. Schematic representation of the locally adaptive
smoothing algorithm.

wa(k) =
(

1
a2n2

Δn2+1
a (·) ∗ βn1+n2+1(· + sa−1,n2)

)
(k) (6)

is a 2D non-separable mask that corresponds to the (n2 +
1)-finite differences of a shifted B-spline of degree (n1+n2+
1) andM = (n1 + n2 + 1 + a(n2 + 1)) is the mask size per
dimension.
The spatial structure of the filter wa has particular prop-

erties. As the convolution with the scaled finite differences
results in the replication of the sampled B-spline with a dis-
tance a between replicas, the mask corresponds to a modified
’a trous’ filter. Smoothing at each position b is done by fil-
tering of the coefficients gδ with (n2 + 2)2 ’clusters’ of size
(n1 +n2 +1)2, each ’cluster’ being separated from its neigh-
bors by a distance a in both dimensions. Consequently, the
maximum number of non-null weights of the filter mask is
equal to (n2 + 2)2 · (n1 + n2 + 1)2. Finally, when the scale
is smaller than the cluster size a < (n1 + n2 + 1), the clus-
ters overlap, and the most efficient approach is to calculate
the convolution with the full mask. For moderate and large
scale values a ≥ (n1 +n2 +1), the most efficient option is to
write the computation as the inner product of gδ and a series
of pre-calculated non-null weights wa given by the following
equation

f(b) =
(n2+1,n2+1)∑

k=(0,0)

(N−1,N−1)∑
p=(0,0)

gδ[p + p0 + b]wa(k,p) (7)

whereN = n1+n2+1, p0+b is the first significant element
of gδ for each k, p0 = �−ak + sa−2,n2 + s1,n1� and wa is
the following look-up table

wa(k,p) =
1

a2n2
q(k)βn1+n2+1(−ak − p − p0 + sa−1,n2)

(8)
2.2.3. Fast Implementation

A box diagram for a fast implementation of the algorithm is
shown in Figure 1. For each of the scales, we compute the
most reduced set of non-null weights wa, given by (6) when
a < (n1 + n2 + 1) and by (8) if a ≥ (n1 + n2 + 1). We then
store the weight values in a look-up table. In the initialization
step, the B-spline expansion coefficients cδ of the sample im-
age fi(x) are calculated, and the running sum operator Δ−1

1

is applied (n2 + 1)-times. The intermediate result gδ does
not depend on the scale a. The output fo(b) at position b is
calculated by filtering with the modified ’a trous’ filter whose
coefficients are stored in the matrix wa.
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Fig. 2. Number of samples of the filter (log scale) versus the
scale value.

Figure 2 illustrates the important reduction in the num-
ber of filter samples, and therefore in computational cost, ob-
tained at medium and high scales by our adaptive B-spline fil-
ter implementation (black lines) when compared with a sam-
pled Gaussian kernel with a sigma equal to the scale value
(σ = a) (gray-curves). Values are shown for different B-
splines degrees (i.e., n2 = 0, ..., 3) and for two typical Gaus-
sian kernel sizes (i.e., �3σ� and �5σ�).

3. EXPERIMENTAL RESULTS

Our filter was evaluated and compared to other commonly
used filters both qualitatively and quantitatively. For the quan-
titative analysis, we used the Shepp-Logan phantom, with two
different kinds of noise and artifacts. First, we modified the
intensities of the phantom so that it followed a Rician distribu-
tion, as real MRI magnitude images do. Alternatively, we re-
constructed the phantom image from a limited number of pro-
jections using a filtered back-projection algorithm, imitating
the micro-CT image acquisition process. The performance
was evaluated looking at two different parameters: residual
noise (RN), which is the standard deviation of pixel intensi-
ties in homogeneous areas of the image [1], and average edge
width (AEW), calculated as the ratio between the total num-
ber of pixels that belong to an edge and the number of edges in
the image [4]. In particular, our filter was compared to fixed
scale smoothing and anisotropic diffusion [5]. The possible
scale values for the B-spline adaptive smoothing were integer
values between 0 and 15. The scale value for the fixed scale
smoothing was set to 10, which was approximately the mean
scale value for the phantom. In all cases, linear B-splines
were used. The parameters for the anisotropic diffusion were
typical: 0.1 time step, 10 iterations and 3.0 conductance.
Table 1 shows the mean and standard deviation of the RN

values in 23 manually selected homogeneous regions of the
phantom, for three different levels of Rician (MRI-like) noise
(σ of 500, 1000 and 1500 for the underlying Gaussian dis-
tributions). The mean AEW values for the three filters com-
pared are shown in Table 2. Tables 3 and 4 show the results

(a) (b) (c)

Fig. 3. (a) Detail of Shepp-Logan phantom reconstructed
from 128 projections. (b) Phantom after diffusive filtering.
(c) Phantom after adaptive B-spline smoothing.

on the Shepp-Logan phantom with the micro-CT-like noise
and artifacts. In all cases, it is clear that our adaptive B-spline
smoothing outperforms fixed scale smoothing and anisotropic
diffusion, since it provides higher homogeneity and better de-
fined edges simultaneously. When compared to anisotropic
diffusion, the average improvement in homogeneity is 54%
for the MR phantom and 43% for the micro-CT one, with a
reduction in AEW of 0.73 and 1.08 pixels respectively. The
mentioned difference in homogeneity is statistically signifi-
cant (p < 0.001), as shown using a Wilcoxon matched-pairs
signed-rank test. The effect can be qualitatively observed in
Figure 3, where the two filters are applied to the phantom re-
constructed from 128 projections.
We then tested our filter on real biomedical images. Fig-

ure 4 shows an MR image of the human head. We found
that, for a comparable level of smoothing in homogeneous ar-
eas, adaptive B-spline filtering blurs borders considerably less
than the other filters. The same effect can be observed in Fig-
ure 5, which shows a micro-CT image of a mouse lung with
multiple small details, as tumors and vessels.

NF FS AD BS
Level 1 451.57 431.00 194.92 67.92

78.24 472.85 201.46 25.57
Level 2 920.10 445.40 253.09 124.90

153.06 441.85 170.97 42.15
Level 3 1346.66 477.19 343.47 181.05

240.38 416.97 152.42 54.32

Table 1. Mean (first entry) and standard deviation (second
entry) of RN values for different levels of Rician noise and
denoising filter: NF: No filtering; FS: Fixed-scale B-spline;
AD: Anisotropic diffusion; BS: Adaptive B-spline.

NF FS AD BS
Mean AEW 7.54 11.33 8.34 7.61

Table 2. Mean AEW values averaged through the three dif-
ferent levels of rician noise for different denoising filters
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NF FS AD BS
128 Pr. 1106.66 398.98 220.88 134.51

61.45 422.15 210.63 120.08
256 Pr. 648.04 423.00 221.95 124.53

60.82 449.15 228.95 110.72
512 Pr. 499.26 428.84 222.16 121.96

67.93 456.53 233.73 109.48

Table 3. Mean (first entry) and standard deviation (second
entry) of RN values for different number of projections and
denoising filter: NF: No filtering; FS: Fixed-scale B-spline;
AD: Anisotropic diffusion; BS: Adaptive B-spline.

NF FS AD BS
Mean AEW 8.28 9.77 9.50 8.42

Table 4. Mean AEW values averaged through the three dif-
ferent numbers of projections for different denoising filters

(a) (b)

(c) (d)

Fig. 4. (a) Region of MR image of human head. (b) Scale
image that corresponds to (a). (c) Same region after diffusive
filtering. (d) Same region after adaptive B-spline smoothing.

4. CONCLUSIONS

We showed that scale-based B-Spline filtering can yield sat-
isfactory results in biomedical images of different modalities
and different levels of noise. In our experiments, adaptive B-
spline smoothing provided a better trade-off between removal
of noise and edge degradation than anisotropic diffusion. This
is an important property that may simplify further image pro-
cessing and analysis, such as segmentation of organs or dis-
eased areas. Moreover, the computational load of the filter
is independent of the scale value and depends only on the B-
spline order selected for interpolation and convolution, which
is an advantage over other scale-based filters.

(a) (b)

(c) (d)

Fig. 5. (a) Left region of a micro-CT image of a mice lung
with a moderate tumor load (white arrows indicate tumors).
(b) Scale-scene that corresponds to (a). (c) Same region after
diffusive filtering. (d) Same region after adaptive B-spline
smoothing.
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