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ABSTRACT 
 
This paper investigates motion tracking for ultrasound 
imaging. The proposed method is adapted to ultrasonic 
images and uses a bilinear motion model for controlling the 
local mesh deformation. We use an iterative multi-scale 
approach which is shown to considerably decrease the 
estimated motion error when we pass from 1 to 2 iterations.  
The proposed algorithm is tested in two medical 
applications. First, we use it to track tissue motion for 
ultrasound elastography. The second application is related 
to slow blood flow estimation with high frequency 
ultrasound imaging. In both cases, our technique 
considerably improves the quality of the results compared to 
classical block matching (BM). 
 
Index Terms— parametric motion modeling, sub-pixel 
motion estimation, deformable block matching, multi-scale 
approach, ultrasound imaging. 
 

1. INTRODUCTION 
 
Motion estimation is used in different fields, like for 
example moving picture coding (H.264) or video 
manipulation (MPEG-4 framework) [1].  Among motion 
tracking techniques, those based on block matching are the 
most common. 
In ultrasound imaging, motion estimation has its 
applications in different domains, such as ultrasound 
elastography and blood flow estimation which will be 
investigated here. Ultrasound images are characterized by a 
granular texture known as speckle. It is shown that, as in the 
case of video applications, ultrasound speckle provides 
temporal correlation when motions are small and in the 
plane of the image. Many techniques of ultrasound motion 
tracking are based on methods developed for digital video. 
However, Yeung et al. present in [2] a comparison between 
scene-oriented and ultrasonic image sequences, concluding 
that specific techniques adapted to ultrasound images are 
necessary.  Among the challenges in block matching 
introduced by ultrasound images we can mention motion 
ambiguities in regions of image saturation or specular 
reflection, speckle decorrelation and low signal-to-noise 

ratio. Further explanations about the difficulties in motion 
tracking with ultrasound are given in [2].  
In most video applications, local motion can be modeled by 
rigid translation and rotation. In medical applications it is 
shown that tissues are also deformed. Therefore, our 
generalized block matching is based on a bilinear local 
model. Motion tracking is then locally controlled by eight 
parameters, which will be estimated in regions of interest 
covering the entire image. Our parametric deformable block 
matching is developed for ultrasound applications and the 
iterative way of estimating is found to considerably improve 
the motion tracking. The proposed method is adapted to 
locally estimate small motions compared to the images 
resolution. In this way, the multi-scale approach is shown to 
provide good results when ultrasound images are 
interpolated. 
The performances of the method are evaluated in two 
ultrasound applications, for tissue elasticity and blood 
velocity estimations.  
 

2. METHOD 
 
2.1. Local motion 
 
We consider a pair of images I1(x,y) and I2(x,y). The relation 
between the two images is defined by: 

))y,x(vy),y,x(ux(I)y,x(I ++= 12  (1) 

where u(x,y) and v(x,y) are the spatially varying motion 
fields along the two directions (x and y) of the images. The 
2-D motion tracking problem deals with the estimation of 
these two components in each pixel of I1.  
 
2.2. Algorithm description 
 
Generalized block matching, also referred to as deformable 
block matching [3], employs a parametric transformation to 
describe the local motion. Thus, a collection of nodes on 
image I1 (corresponding to a rectangular mesh) is tracked on 
image I2 onto irregular quadrilateral of pixels. 
In our case, we consider a bilinear model to locally 
characterize the motion (see section 2.3). With the proposed 
method, the parameters of the bilinear motion model are 
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estimated in rectangular regions of interest (hatched region 
of pixels in Figure 1 and noted R) of size Lu× Lv, chosen 
around the defined nodes N. The parametric estimation is 
made by estimating the translations of the four corners 
(noted C) of this region of interest. Corner translations are 
estimated considering rectangular blocks (noted B and 
having size Lu× Lv) centered on each corner and joined in 
the current node N. Simple block matching is then used in 
order to estimate these four 2-D translations. We call study 
zone the image region (ABCD) that contains the region of 
interest and the four blocks around its corners. An asterisk 
denotes the nodes, corners and blocks after the local spatial 
transformation. 
The main steps of our algorithm in tracking the motion 
between two images are given bellow. 
 
1. Create initial rectangular mesh on I1. 
2. Define regions of interest R around nodes N. 
3. For each node Ni, do steps from 4 to 12. 
Node Ni: 
4. Initialize the translations of region of interest Ri taking 
into account the estimation results of its neighbors. 
5. For each iteration k, do steps from 6 to 11. 
Iteration k: 
6. Consider 4 rectangular blocks, noted Bij around corners 
Cij of Ri, with 4..1=j , and place 4 corresponding search 

regions on I2. 
7. Interpolate the search regions by factors of s1

k in the axial 
direction and s2

k in the lateral direction. 

8. Estimate the translations of corners Cij of current Ri 

),( vjuj dd  by 4 times simple block matching, maximizing 

the normalized cross-correlations defined in (2). 
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where Bij is a block of the reference image considered 
around one corner of the region of interest Ri and Bij

* a 
candidate block of the search region in the image after 
deformation. We have: 

( )),(maxarg)d,d( j
,

vjuj βαρ
βα

=  (3) 

9. Compute the parameters of the bilinear model for the 
current study zone (which contains Ri and the four blocks 
Bi). 
10. Deform the current study zone with the locally estimated 
bilinear model. 
11. If final iteration, go to step 12, otherwise go to step 6. 
12. If final node, go to step 13, otherwise go to step 4. 
13. Compute the dense motion field. 
 
For both ultrasound applications in section 3, a preliminary 
study allowed us to set the method parameters, as the mesh 
steps, the regions of interest size, the number of iterations 
and the interpolation factors.    

 
Figure 1. Parametric motion estimation for a given region of interest (hatched region) around one node. 

 
2.3. Motion model 
 
A bilinear model of displacement was chosen to locally 
describe the motion field [4]. The lateral and axial 
components of the motion vector are noted: 

+++=
+++=
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 (4) 

where u and v are the displacements along x and y, in 
relation to the node N.  

 
2.4. Local estimation 
 
As we show in the algorithm description, we locally 
estimate the translation of the four corners of the region of 
interest. These four 2-D translations and the parametric 
motion model considered in 2.3 allow us to write two 
systems of four equations. The resolution of these two 
equation systems gives the relations between the parameters 
of the motion model and the translations of corners Cij. 
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With the matrix M, depending on Lu and Lv: 
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2.5. Iterative multi-scale approach 
 
The algorithm description presented in section 2.2 shows 
that local estimation of the bilinear parameters works 
iteratively. Since we developed our method to track motion 
with sub-pixel precision, a multi-scale approach is 
proposed. We propose that at each resolution level the 
computation grid be refined by bilinear interpolation. For 
computation reasons, we propose to interpolate only the 
search regions and to maintain the initial resolution of 
blocks in I1. Moreover, at each iteration, the current study 
zone of I1 is deformed when equations in (4) are applied and 
using the bilinear parameters estimated at the previous 
iteration. In this way, the next iteration starts with 4 
deformed blocks which allow better estimation of the 
current region of interest corners translations.  
The interest of the iterative multi-scale approach is shown 
by the experimental results, as the motion tracking error 
decreases with the advancement in iterations.  
 
2.6. Dense motion field 
 
Steps 1 to 12 presented in section 1 describe the estimation 
of the 8 parameters of the bilinear motion model for each 
region of interest. The final step is to compute the dense 
motion field. With our method, the size of the regions of 
interest is considered larger than the distance between two 
neighboring nodes. Therefore, the pixels of the gray area in 
Figure 2 were estimated four times. Finally, only nodes and 
points A displacements are consider to calculate the dense 
motion field, by bilinear interpolation to the entire image. 
Motion in points A, as they were estimated four times, is the 
mean of these four estimated displacements. This way of 
obtaining the dense motion field has the advantage of 
introducing regularization constraints for the final result. 
 

 
Figure 2. Dense motion field computation. 

 
2.7. Confidence measure 
 
As the proposed method is tested in this paper on 
experimental data, the true motion field between the 
ultrasound images is not available. Therefore, characterizing 
the quality of motion estimation requires a confidence 
measure. For this, we applied the estimated 2-D motion 
field to the image I2(x,y) in order to map it onto the 
reference image I1(x,y). We thus obtain the registered 
version of I2(x,y), which we note ),(1̂ yxI . Further, we 

calculate the normalized cross-correlation defined in (2) 
between blocks in I1 and their corresponding blocks in 1̂I . 

We obtain a cross-correlation coefficients map and our 
similarity measure ( ) is defined as the mean value of all 
these values. 
 

3. APPLICATION TO ULTRASOUND 
 
3.1. Elasticity imaging 
 
The first experimental application deals with ultrasound 
elastography. Elastography is an approach of measuring the 
elasticity of soft tissues and was first introduced by Ophir in 
[5].  Its principle consists in acquiring images of the same 
medium for different levels of compression. In ultrasound, 
the compression is directly applied with the scanner probe 
and represents a few percents of the medium depth. 
Moreover, strain images are constructed by derivation of the 
estimated displacement between two acquired images. 
The experimental result we present here is considered with 
phantom data. The phantom (Elasticity QA Phantom, model 
049, by CIRS Tissue Simulation & Phantom Technology, 
USA) was designed for ultrasound elastography and 
presented a spherical 10-mm diameter inclusion of 62 kPa 
for a surrounding medium of 29 kPa. The images were 
acquired with a research scanner Sonix RP by Ultrasonix 
Medical Corporation, Canada, with a 8-MHz linear probe. 
The result is shown in figure 3(a) and 3(b). Note that the 
inclusion is clearly visible on the strain image whereas it is 
not the case on the B-mode image. On figure 3(c), our 
method is compared with classical block matching using the 
confidence measure in 2.7. We also notice that for the same 
final resolution level, making more iterations increases the 
estimation precision. When only one iteration is processed 
the multi-scale approach is not used. Thus, its influence can 
be evaluated when passing from one to two iterations. 
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A 

ROI R 

4 neighboring 
nodes on I1 

II - 431



   
(a) (b) (c) 

Figure 3. The B-mode image with estimated displacement vectors (2 iterations, 1/9 final resolution level) (a), the axial strain 
image in % (b), similarity measurement for BM and our method for different number of iterations and final resolutions (c).  

 
3.2. Flow imaging 
 
The second experimental application concerns the 2-D 
blood velocity estimation. For this, we use two B-mode 
images acquired on a gelatine phantom containing a vessel 
of 1 mm diameter. A blood mimicking fluid was injected 
with calibrated velocity of 1 mm/s. The angle between the 
ultrasound probe and the vessel was considered close to 
zero degree. Figure 4(a) shows the estimated velocity 

vectors superimposed to the B-mode image. Figures 4(b) 
and 4(c) show the axial velocity profiles estimated with our 
method and with classical block matching. For both cases 
the mean and standard deviation values are compared to the 
theoretical profile corresponding to a laminar flow. As 
expected the mean velocity is about 1 mm/s. It is shown that 
with our parametric block matching we decrease the 
standard deviations values by a factor of 3 reported to the 
classical method. 

   
(a) (b) (c) 

Figure 4. Blood velocity estimation: 2-D estimated motion vectors superimposed to ultrasound B-mode image (a), estimated 
mean and standard deviation (solid line) and theoretical (dotted line) axial profiles for (b) our method and (c) block 

matching.  
 

4. CONCLUSION 
 
In this paper, a parametric deformable block matching 
adapted to ultrasound images is presented. Our method was 
developed to locally estimate small complex motions. 
Therefore, a bilinear model was locally used to track motion 
between two ultrasound images and an iterative multi-scale 
approach of estimating was employed. Results on tissues 
and flow motion tracking with ultrasound are presented and 
show considerable improvements compared to classical 
block matching. In future work, a temporal model of the 
motion parameters can be added to the proposed method.  
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