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ABSTRACT

Neuron axon analysis is an important means to investigate 
disease mechanisms and signaling pathways in 
neurobiology and often requires collecting a great amount 
of statistical information and phenomena. Automated 
extraction of axons in 3D microscopic images posts a key 
problem in the field of neuron axon analysis. To address 
tortuous axons in 3D volumes, a self-adjust region growing 
approach referring to surface modeling and self-adjustment 
which takes advantage of the nature of axon (e.g., 
continuity), is presented. Experimental results on axon 
volumes show that the proposed scheme provides a reliable 
solution to axon retrieving and overcomes several common 
drawbacks from other existing methods.  

Index Terms— region growing, self-adjust, neuron axon 

1. INTRODUCTION 

Neurons are composed of dendrites, cell body, synapses and 
axons. As a specialized part of neuron, axon is crucial in all 
research that attempts to reconstruct connectivities of 
neurons. Hence, the research of axon structure acts an 
important role [1] in investigating nervous system. 

The tortuous nature of the axons necessitates the 
reconstruction of axon trajectories through manual selection 
of 2D slices, a particularly time-consuming task that often 
requires plenty of neurobiologists’ time. In order to process 
large volume of datasets and extract quantitative results, it is 
necessary to develop an automatic 3D axon detection 
algorithm. Rapid, automated cell axon segmentation and 
tracking would allow immediate visualization of the axon 
trajectory, thereby permitting assessment of cell axon 
modality directly. A variety of approaches have been 
proposed in the literature which can be broadly classified 
into two groups, 2D-based and 3D-based methods.  2D-
based methods are often involved with detecting axons in 
individual slices of 3D datasets and synthesizing 

correspondence between slices. Because the tortuous nature 
of axons often makes the tracking through slices endure a 
lot of correction, 3D-based processing is considered to be a 
reasonable solution. A wide range of 3D-based techniques 
have been proposed, such as 3D mathematical morphology 
methods [1], 3D deformable model based methods [2], and 
3D region growing. A profound review of tubular object 
extraction algorithms including many 3D-based methods 
can be found in [3]. However, in order to make use of the 
spatial continuity of axons other than the intensity contrast 
between axons and background, 3D region growing seems 
to be the most congruent method to extract axon trajectory. 

3D region growing is a technique which begins with a 
seed location and attempts to extract a connected region 
which corresponds to a meaningful object from 3D volume. 
For the segmentation of tubular shapes and of vessels in 
particular, high level constrains have been introduced to 
achieve better performance. In [4], vessel direction and 
regional measure are used to control the evolution of region 
growing. In [5], region probability estimation and region 
classification are employed to express prior knowledge 
before segmentation. However, the pitfalls characterizing 
the cell axons is the touching problem which is a prevailing 
phenomenon resulted from multiple closed axons which 
cannot be detached correctly even by human. Thus, while 
these methods are adequate for segmentation of vessels 
which seldom wind together, they cannot truncate the 
wrongly grown part during the evolution of region growing. 

Our work aims to develop an image segmentation 
methodology for automatically extracting the whole axon 
meshwork from 3D dataset acquired using confocal 
microscopy. Inspired by the evolution process associated 
with region growing, in which axon continuity, shape, and 
conformation are implicitly expressed, an algorithm for 
axon extraction is proposed. By modeling the evolution and 
introducing high level shape constraints and prior 
knowledge, a self-adjust region growing is obtained for 
extracting an axon from the 3D dataset, as described in 
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Section II, and the results are presented in Section III. 
Finally, Section IV provides our conclusions. 

2. PROPOSED METHOD 

The presented method falls into the category of region 
growing approach as described previously. However, 
multiple techniques which introduce shape constrains are 
adopted to deal with the specific characteristics of axon 
segmentation and extraction. 

During the evolution of region growing, every voxel 
which is in the neighborhood of the grown region is 
checked with homogeneity criterion. However, this 
decision-making process is only based on limited 
information such as the intensity of voxel itself and its 
neighborhood, so it is hard to introduce high-level prior 
knowledge to guide the region growing. Unlike other 
methods which try to detect and minimize the error at every 
generation using mechanisms like adaptive threshold [4], 
our method model and analyze previous generation’s results 
to prevent error from spreading as shown in Fig. 1. In order 
to introduce shape constraints and self-adjust abilities, we 
describe the proposed region growing algorithm with basic 
concepts and definitions. 

Fig. 1 Flow chart of the proposed       Fig. 2 Generation, surface, 
 approach.                                          and isolated surface.  

2.1 Basic concepts 

2.1.1 Generation, surface and isolated surface 
Generation is an important property of voxels added to the 
grown region which indicates the order of added pixels in 
region growing. The value of the seed point is set to 1 and 
the value increases while region growing. As a result, a 
voxel with a smaller generation value means that it is added 
earlier than voxel with a larger generation value.  In 
consequence, all pixels in the grown region with the same 
generation value form a surface as shown in Fig. 2. The 
surface described in Fig. 2 can be divided into a few 
isolated surfaces. As the word “isolated” indicates, voxels in 
different isolated surfaces are not connected to each other 
while voxels in the same isolated surface are connected to 
each other with the voxel having the same generation. The 
size, normal direction, and average gray-level of isolated 
surface are important properties which can describe the 
essential process of region growing. 

2.1.2 Seed point and seed surface 
Seed selection is the only human interactivity that region 
growing needs. There is no special constraint when 
selecting seed points besides the seed should be a typical 
voxel in the ROI (Region Of Interest). However, the region 
growing process will be greatly facilitated without 
increasing any human interactivity if we introduce a new 
constraint. Thus seed surface which is produced by a seed 
point is introduced. First we locate a relative uniform tube 
shape in ROI with clear boundaries to ensure the quality of 
seed surface. Then we select the tube’s central point as the 
seed points which would not be a hard task when we deal 
with 3D cell axon datasets. Finally the original region 
growing is started as described in Fig. 3. After the growing 
surface touched the tube boundary, the growing surface will 
be automatically divided into two isolated seed surfaces 
with normal direction that parallels the tube’s direction. Our 
self-adjust RG will start from these seed surfaces given by 
aforementioned approach. 
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Fig. 3 Seed surface.    Fig. 4 Fitting plane of isolated surface. 

2.2 Surface modeling and information collection 

Self-adjustment indicates our method is a two phase method. 
First, we track every evolution of region growing and 
collect selected information which can describe the 
evolution essentially. Then decisions are made to detect and 
stop errors. The information collection and update process is 
discussed in this section, and the realization of self-
adjustment will be discussed in the next section. 

After every evolution of region growing, the 
information collect phase is activated. First, isolated surface 

of the current generation is detected and the 
corresponding best fitting plane  [6] represented by 
S

'S
0ax by z c is calculated. Consider voxel 

( , , ) ,  1, ,i i i iP x y z S i n  with gray level ig , to find the 
weighted best fitting plane in a least square sense, the 
function 2( ' )i ig z z  has to be minimized. Then we use 

surface ’s centroid S 1 ( , , )c i c c cP P x y z
n

 which is 

contained by  to solve for  and get: 'S c
2 2( ) [ ( ) ( ) (i i i i i i c i c i c )]g ax by c z g a x x b y y z z

The plane normal ( , ,1)n a b  can be found by calculating: 
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Then the further analysis of the fitting plane is taken to 
provide information for decision making. Following 
properties of best fitting plane  are collected and 
calculated:

'S

(a) Shape information 
As shown in Fig. 4, centroid , surface’s projected 

area A and normalized plane normal n  of  is calculated 
to form a propositional description of the surface.  

cP

'S

(b) Gray-level information 
Instead of recording every single voxel’s gray level, we 

collect mean G  of the voxels belong to the same isolated 
surface which delivers statistical property of surface. 
(c) Corresponding isolated surfaces in previous generation 

Because of the continuity of ROI (cell axon), we can 
use previous isolated surfaces to predict current isolated 
surfaces’ properties and thus benefit the decision making. 
Considering the complexity and computational expense, we 
use generation m-1 and m-2 to predict generation m’s 
normal direction :mn

1 1( )m m m mn n n n 2

After information which can essentially describe the 
region growing process is collected, the error detection 
phase is under taken. 

2.3 The realization of self-adjustment 

As stated previously, our region growing approach is a self-
adjustment approach. In order to realize the self-adjust 
function, first we locate the errors need to be adjusted and 
then correct these errors. 

Generally speaking, there are two kinds of errors in cell 
axon region growing process. One is leaking and the other 
one is touching. The first error is caused by the region 
growing approach itself while the latter one is considered to 
be the problem of the target dataset. We will discuss these 
errors respectively.
(a) Leaking problem 

Leaking happens at relative weak boundaries of ROI. 
Even with an optimal homogeneity criterion, the region 
growing can leak out if the contrast at the object boundary 
is not sufficient. As shown in Fig. 5(a), the region growing 
approach acts normally until generation N+2. The leaking 
happens at generation N+3 where there is a relative weak 
boundary denoted by the dotted line. There would be a very 
small branch of the extracted area at the initial stage of 
leaking (generation N+3). However, this branch will be 
expanded greatly (generation N+4) and produce very poor 
results after a few generation. So it is critical to detect the 

leaking as early as possible. The earlier we detect it, the 
easier it would be for us to remove the wrong branch caused 
by leaking. As the normal grown area and the leaked part 
will be departed by the strong boundary, multiple isolated 
surfaces can be detected after generation N+3. 
(b) Touching problem 

Touching problem is another prevailing phenomenon 
resulted by multiple closed axons which cannot be detached 
correctly in some region of the target dataset even by human. 
This kind of error is hard to detect when using traditional 
region growing methods which do not employ further 
analysis of the grown region and just take localized 
information into consideration. On the contrary, our self-
adjust region growing analyzes the retrieved region after 
every generation and makes decision on a global basis. Fig. 
5(b) points out when touching happens (generation N+3), 
another axon is added to grown region and thus multiple 
isolated surfaces are produced at generation N+4. Worse 
result (generation N+5) will be produced if region growing 
continues without any adjustment. 

 (a)    (b) 
Fig. 5 Leaking problem and touching problem. 

After we review the properties of error patterns, we can 
find that error happens when multiple surfaces are detected 
(generation N+4). In that case, we need to select the correct 
isolated surfaces after every evolution of region growing if 
there are multiple surfaces. If correct surface is selected, our 
scheme can stop the error from spreading and adjust itself. It 
is possible to have multiple correct surfaces; however, in 
order to predigest the algorithm, we use only one surface to 
continue further evolution. Our surface selection algorithm 
can be described as follows: 
For all isolated surfaces  in generation :1 nS S m

Step 1: remove xS  if
1

0.1
n

x i
i

A A , if there are more than 

one surface left. 
Step 2: sort all surfaces according to project area A  as 

 from large to small, respectively. 1 2, nS S S
Step 3: if  is a primary surface which1S

1
2

i
i n

A A , select 

surface and go to step 7. 1S
Step 4: remove all surfaces but three largest surfaces ,
and .

1S 2S

3S
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Step 5: remove xS  which gets most different G  compared 
to previous generation. 
Step 6: select xS  whose  is closest to the predicted value 
as candidate surface. 

mn

After the right surface is selected, the region growing 
continues and generation  is produced. 1m

3. RESULTS 

The proposed approach has been validated by applying it to 
several representative volumes of axon images. It takes 
approximately 10 seconds per axon to automatically retrieve 
through 256 slices on a desktop PC with 1.8GHz CPU. The 
number of axons varies dynamically during the whole 
sequence.

In Fig. 6, the partial result from a volume containing 
128 slices is shown. An axon with a low contrast boundary 
is extracted in (a). In the marked area, the red curve which 
represents the percentage of voxels that have been removed 
shows about 25% of the grown voxels are removed from the 
grown region so that leaking can be stopped. Two touchings 
are detected and avoided in (b). Because of the tortuous 
nature of axons, our scheme removed some voxels by 
mistake; however, the red curve which gets two groups of 
peaks when touching happened demonstrates the validity of 
our scheme. The right most images show our scheme is able 
to choose the correct part of the touched axons although 
there is no palpable boundary in some slices. 

Fig. 7 provides the testing result on a volume which 
contains 4 axons through 256 slices. The radii of axons are 
about 5-7 voxels, and the distance between axons is about 
0-3 voxels. As shown in Fig. 7, we can successfully track all 
axons although there are several touchings. Some slices of 
the marked area are shown on the right. 

4. CONCLUSION 

This paper has introduced a novel neuron axon extraction 
approach with self-adjust ability for real-time optimization 
of 3D region growing results from image volume produced 
by serial block-face scanning electron microscopy. Our 
scheme is composed of three steps, a 3D region growing for 
getting a set of isolated surface, a modeling process for 
retrieving essential information from isolated surfaces, and 
the self-adjust approach for removing incorrect surfaces. 

We have shown the validity of our scheme against a 
variety of interferences and the ability of extracting whole 
axon structures. Compared with classical approaches, our 
scheme shows much better results derived from global 
information explored and utilized. We also expect new 
improvements of our scheme and explore its application in 
other domains. 

(a) (b)
Fig. 6 Processing results of leaking and touching. 

Fig. 7 Performance on long axons. 
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