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ABSTRACT

Medical Images often contain very small and hardly detectable

objects or patterns, which can be of grave importance for di-

agnosis. In this paper we present a new method for aiding

medical doctors in diagnosis of such images by adding ar-

tificial movement to the static images, in order to utilize the

motion sensitivity of the human visual system. This technique

permits detection of lesions not just by intensity, structure and

texture differences with its surroundings, but by motion as

well. Statistical analysis of experimental tests with both ra-

diologists and non-radiologists show improved detection rate

of microcalcifications in mammograms, raising it on average

by 20.8% for non-radiologists and by 8.4% for radiologists.

Index Terms— dynamic cues, visual perception, mam-

mography

1. INTRODUCTION

The human vision system (HVS) is a very powerful tool for

perception and image processing. Among its basic capabil-

ities figure segmentation, registration and processing of still

images. Nevertheless, there is a variety of cases in which for

the HVS it is very complicated, if not impossible, to detect

certain patterns or objects. This is often the case in medical

images where it is necessary to spot objects in front of a back-

ground of a color or texture almost identical to the objects’.

A classical example of this kind of images are mammo-

grams with microcalcifications. Microcalcifications are small

deposits of calcium in breast tissue, that may indicate breast

cancer if present in malignant clusters. Unfortunately mam-

mograms tend to be of low contrast and microcalcifications

of very small size, making it very difficult for the examining

radiologist to detect them and make a correct diagnosis [1].

To overcome these problems the method described here

uses two particular properties of the HVS, motion and flicker

sensitivity. Amplitude sensitivity is what is used for viewing
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static scenes where differences of intensity or color can be in-

terpreted as objects, textures, shadows, etc. Motion sensitivity

on the other hand deals with detection of moving objects. In

fact, most cortical cells of the HVS respond better to moving

objects than stationary ones [2]. Flicker sensitivity is used for

detection of temporally modulated stimuli.

By artificially introducing spatial or temporal movement

into mammograms it is possible to use all three sensitivities in

order to detect microcalcifications, instead of just amplitude

sensitivity. This way, dynamic cues of locations of possible

lesions are introduced into mammograms.

2. PROPOSED METHOD

There are several ways of introducing dynamic cues into im-

ages. They basically depend on two functions: The motion

function fmov and the observation function fobs. The motion

function specifies the type of movement or changes. The ob-

servation function sets the parameters for the motion.

2.1. Motion Function

From a single gray scale still image I0 of m × n pixels it is

possible to generate a sequence of k = 0 . . . p images of m×n
pixels, in which the intensity I of the pixel corresponding to

the coordinates (i, j) of the kth image can be expressed as in

equation 1.

Ik(i, j) = fmov(fobs(I0(i, j)), k) (1)

Ik(i, j) is a discrete sequence of m × n pixels dependent

on the motion function fmov() which defines the movement

of the pixels through the sequence of frames. This movement

can be spatial or temporal, meaning that a pixel can vary its

spatial location or its intensity in time.

A possible implementation of spatial movement is a side-

ways oscillation of every pixel at constant amplitude and a

frequency that depends on the pixels original intensity. This

way a light pixel may oscillate from one side to the other

faster than a darker pixel.
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For temporal movement an example could be a sinusoidal

variation of intensity for every pixel where frequency of vari-

ation depends on the pixels original intensity. That way an

originally lighter pixels intensity would change faster than an

originally darker one’s. The equation for a possible imple-

mentation of this technique is given in equation 2.

Ik(i, j) = g(I0(i, j))+a·cos(2πf0k ·fobs(I0(i, j))+φ) (2)

Here, Ik(i, j) represents the intensity of the pixel of coor-

dinates (i, j) in the kth frame, g() is an offset for every pixel,

a is the amplitude of the sine wave, f0 is its fundamental fre-

quency, fobs is the observation function and φ the phase shift.

2.2. Observation Function

The observation function fobs defines what exactly the move-

ment is based upon. Whereas the motion function defines

what is to be done with each pixel, the observation function

defines the pixel itself, i.e. the original intensity of the pixel

used to create the sequence. If fobs(I0) = I0, meaning fobs is

the identity, we have the particular case that throughout the se-

quence the movement depends on the pixel intensities of the

original image. When fobs(I0) = d
d�x (I0) movement varies

according to the first derivative of the initial image. Other,

more complex implementations are also possible as shown

next:

fobs(I0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I0
d
d�x (I0)
Canny Filter of I0

Unsharp Mask of I0

Wavelet Transform of I0

. . .

3. EXPERIMENTAL RESULTS

Let us consider the rather simple case of a sinusoidally chang-

ing pulsating intensity motion function and the identity matrix

as observation function. The equation for such a sequence

is Ik(i, j) = αI0(i, j) + (1 − α) cos(2πf0k · I0(i, j)) for

k = 0 . . . p where the intensities of the pixels range from 0

(black) to 1 (white). The first frame is α times the original

image since k = 0. The frames for k = 1 . . . p yield a se-

quence of matrices in which each pixel sinusoidally changes

its intensity proportionally to its original intensity.

By now seeing the whole array of images as a movie se-

quence it is possible to detect objects by the phase shift pro-

duced between two pixels with different original intensities.

Even if these two adjacent pixels have relatively small differ-

ences in intensity in the original image, in time the phase shift

will become clearly visible in the movie. An example of this

is shown in figure 1, where using this proportional sinusoidal

approach two pixels with a minimal intensity difference show

a phase shift of 180◦ in a very short time.

Fig. 1. Phase shift of two pixels with similar intensities

(a) Original Image (b) Frame 3 (c) Frame 6

(d) Frame 9 (e) Frame 12 (f) Frame 15

(d) Frame 18 (e) Frame 21 (f) Frame 24

Fig. 2. Sequence of frames

In some aspects this is similar to dynamically changing

image contrast, which by itself is a frequently used tool in

Medical Imaging. Here the viewer is presented with a se-

quence of the image with sinusoidally changing contrast.

To illustrate this effect on real images, figure 2 shows

samples of a sequence of frames created from a static im-

age. This sequence is comprised of 30 frames generated from

a static digital mammogram using a sinusoidal intensity mo-

tion function and an Unsharp Mask observation function.

The mammogram presented here contains a malignant clus-

ter of microcalcifications in the central right section barely

visible in the original image (figure 2.a), but fairly visible in

some of the subsequent frames. This holds especially true for

frames 14 and 15. For comparison purposes the original im-

age and Frame 15 are shown in figures 3 and 4 respectively.

Evidently, the malignant cluster is far more visible in fig-
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Fig. 3. Zoom of original mammogram

Fig. 4. Zoom of frame 15

ure 4. Additionally to the enhanced visibility, the fact that the

cluster cycles rapidly from hardly visible to very visible gives

it a blinking appearance. Obvious by common sense, some-

thing blinking is very likely to attract attention even if not di-

rectly looked at. The explanation lies in the use of motion and

flicker sensitivity. Whereas amplitude sensitivity and foveal

vision are used for concentrating on one specific point, mo-

tion and flicker sensitivity paired with peripheral vision give

a broader view and are used primarily to detect moving or

blinking objects. Once detected, foveal vision can be concen-

trated on these objects for detailed analysis. This approach is

the basic idea behind dynamic cues.

4. STATISTICAL ANALYSIS

In order to compare diagnostics with and without dynamic

cues we designed a test in which the observer is once pre-

sented with the set of static mammograms and once with the

same set, but aided by dynamic cues. In both cases the ob-

server has to give a diagnosis of presence of microcalcifica-

tions, ranging from Category 1: Definitely not present to Cat-
egory 5: Definitely present, and their possible locations in

each mammogram.

The results of these tests were analyzed using a Receiver

Operating Characteristic (ROC) curve, which is widely recog-

nized as a good statistical analysis method for diagnostic in-

formation [5]. In this method the True Positive Fraction (TPF)

is plotted against the False Positive Fraction (FPF) sweep-

ing through all categories of diagnosis. As a single measure-

ment of diagnosis quality we used the Area Under the Curve

(AUC), which lies between 0.5 for a random diagnosis a 1.0

for a perfect diagnosis. The higher the AUC, the better is the

test.

We prepared a set of ny = 124 mammograms with resolu-

tions between 640×640 and 970×970 pixels and a gray-level

resolution of 8 bits per pixel taken from the Mammographic

Image Analysis Society (MIAS) mammographic database [3].

There are a total of 21 cases with microcalcification clusters

and 103 normal cases. Since various degrees of visibility of

microcalcifications are included in the set, this database is

representative of clinical cases.

We tried our method with five radiologists and five non-

radiologists. The resulting ROC curves and the associated

AUC scores were computed using the ROCKIT program pro-

posed in [4]. The AUC for tests with static images and dy-

namic cues for each person are shown in tables 1 and 2. These

tables also show the pooled mean results for radiologists and

non-radiologists, obtained by joining all the diagnoses of the

5 participants of the group and computing the resulting ROC

curve as if it were one person analyzing 5 × ny = 620 cases

[5]. This method usually tends to underestimate the results,

but since it underestimates both categories equally it is well

suited for comparison purposes.

Table 1. AUC Scores for Non-Radiologists

Observer AUC Static AUC DynCues

1 0.830 0.977

2 0.858 0.909

3 0.888 0.985

4 0.886 0.959

5 0.888 0.919

Pooled Mean 0.806 0.910

Table 2. AUC Scores for Radiologists

Observer AUC Static AUC DynCues

6 0.899 0.921

7 0.970 0.970

8 0.913 0.929

9 0.964 0.966

10 0.862 0.934

Pooled Mean 0.900 0.942

As can be seen clearly, diagnosis aided by dynamic cues

significantly raises the ROC curve for both groups. For non-

radiologists the AUC is raised by 20.8%, while radiologists

improve by 8.4%. Commonly, ROC scores for screening mi-

crocalcifications in mammography lie between 0.75 and 0.95
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[6]. The scores obtained in our tests are well within these

typical ranges. Moreover, they indicate a very good result

for classification using dynamic cues in comparison to these

general scores.

The mean ROC curves for both groups are shown in fig-

ures 5 and 6.

Fig. 5. Mean ROC Curves for Non-Radiologists.

Fig. 6. Mean ROC Curves for Radiologists.

5. DISCUSSION

Results clearly show significant improvement in diagnosis for

both groups. The 8.4% improvement for radiologists indi-

cates vast possibilities of improvement if perfected and clini-

cally implemented as a standard visualization tool for radiol-

ogists.

All five medical doctors involved in the tests agreed in

their observations that this method has clinical potential if de-

veloped into a mature system embedded into standard medi-

cal imaging software used throughout hospitals and medical

centers.

6. CONCLUSIONS AND FUTURE WORK

In this work we present a technique for aiding medical doctors

in diagnosis of microcalcifications by introducing movement

to static images. Unlike most previous studies this work does

not rely on a dichotomic or cardinal classification by a com-

puter, but leaves the decision to the human eye. Statistical

tests show that our method significantly enhances detection

and diagnosis capabilities in both experts and non-experts.

Dynamic cues are also likely to give good results in detec-

tion of other abnormalities in medical images, such as lung

nodules.

Further studies will investigate observation and motion

functions most likely to yield even better results for detection

of microcalcifications. Since dynamic cues involve rapidly

flashing pictures, which can be straining on the eyes if looked

at for prolonged periods of time, future work will also con-

centrate on determining a motion function that does not strain

the eyes while still naturally directing attention to lesions.
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