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ABSTRACT 

 
Face recognition algorithms based on mutual subspace 
methods (MSM) map segmented faces to single points on a 
feature manifold and then apply manifold learning 
techniques to classify the results. This paper proposes a 
generic extension to MSM for analysis of features in high-
throughput recordings. We apply this method to analyze 
short duration overlapping waves in synthetic data and 
multielectrode brain recordings. We compare different 
feature space topologies and projection techniques, 
including MDS, ISOMAP and Laplacian eigenmaps. 
Overall we find that ISOMAP shows the least sensitivity to 
noise and provides the best association between distance in 
feature space and Euclidean distance in projection space. 
For non-noisy data, Laplacian eigenmaps show the least 
sensitivity to feature space topology. 
  
Index Terms—Feature extraction, distance measurement, 
multidimensional systems, visualization 
 

1. INTRODUCTION 
 
Mutual subspace methods (MSM) [13] for video face 
recognition transform faces segmented from sequences of 
video images to points on a feature manifold. Each point on 
the feature manifold represents a subspace that captures the 
distribution of segmented video corresponding to one 
person’s face. Clustering or other distance-based techniques 
are then applied on the feature manifold to classify faces in 
the original space [1, 3, 5]. In other words, the face-
classification problem is lifted to an abstract space in which 
manifold learning algorithms can be applied. Lifting works 
well for face recognition because the segmented faces are 
highly correlated and lie in low-dimensional subspaces [3].  

Recordings of brain signals from implanted 
multielectrode arrays have very different features than 
segmented faces. However, the structure in short time 
windows appears to be low-dimensional, suggesting that 
recent advances in manifold learning might be useful in 
understanding and organizing this data. In brain recordings, 
the data are characterized by short-duration waves traveling 

in many directions, making the datasets difficult to analyze 
using standard Fourier techniques [8]. We extend the ideas 
of MSM to these datasets by representing short segments of 
video by single points in a lifted space. However, the 
segments no longer contain face images but traveling 
waves. Because waves are highly correlated signals, we can 
find linear, low-dimensional subspaces that capture a 
significant amount of energy. Unlike previously mentioned 
extensions of MSM, our goal is not classification but rather 
finding planar projections of the feature manifold that group 
segments containing waves with similar propagation 
directions. We demonstrate that the distance between the 
low-dimensional subspaces is a measure of similarity for the 
direction of the waves in corresponding segments. 

In general, when it is possible to represent local 
segments of data by low-dimensional subspaces that capture 
a feature of interest, lifting can be applied to gain insight 
into the distribution of that feature in the original space. 
Lifting not only reduces the dimensionality of the data, but 
also reduces the dataset volume, since an entire segment is 
mapped to a single point on the feature manifold.  

The rest of the paper is organized as follows. Section 2 
describes the proposed technique, and section 3 applies the 
method to real and simulated data. Section 4 offers 
concluding remarks.   

 
2. PROJECTIONS OF FEATURE MANIFOLDS 

 
The algorithm consists of three phases: mapping to a feature 
manifold, applying a topology to this manifold and 
performing a low-dimension projection. Each of these steps 
needs to be tailored to the particular problem being solved.  
2. 1. Mapping to the feature manifold 
The first step is to lift the data from the original space to a 
feature manifold by applying a feature detection test. If the 
feature detection test on a sequence of video is positive, we 
compute the coordinates of the corresponding point on the 
feature manifold.  

To illustrate this technique, we consider video 
recordings containing short duration waves propagating in 
different directions. We detect segments of video that 
contain waves by applying the wave subspace test [7].  The 
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video is segmented using fixed length sliding time windows. 
Each time frame within the window is converted to a vector 
after moving the origin to the frame containing the pixel 
with the smallest amplitude in the window. PCA is 
performed on the resulting set of vectors. If the second PCA 
mode is a phase shift of the first PCA mode to within a 
specified threshold, the time window is considered to have a 
wave feature. We have found that the first two PCA modes 
capture sufficient energy to adequately represent the feature. 
Thus for the reminder of this paper we will represent a 
feature by the two-dimensional subspace spanned by the 
two most energetic PCA modes calculated during the wave 
subspace test.  
2. 2. Defining the topology of the feature space 
Finding a distance that reflects the intrinsic structure of the 
target problem is crucial, because different distance metrics 
will result in different feature space topologies.   

In this paper each segment of video that contains a 
wave is represented by a two-dimensional subspace. Much 
work has been done on different ways to compute subspace 
distances [3, 6, 10, 12]. We compare four subspace 
distances, all of which can be used with subspaces of 
different dimensions.  

Let Ai be the ith subspace and Ai be a matrix whose 
columns form an orthonormal basis for Ai. The projection 
matrix for Ai is given by Pi = Ai Ai

T.  
Subspace distance d1 is based on principal angles: 
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1 cos11)( θ−=−= sd 21 A,A . 
Here smin  is the smallest singular value of the matrix A1

TA2. 
The singular values of A1

TA2 correspond to the cosines of 
the principal angles, so this distance compares two 
subspaces using only the largest principal angle [6]. 
        Subspace distance d2 uses all principal angles [3]: 
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       Distances can also be induced by mapping either the 
orthonormal basis matrices Ai or the corresponding 
projection matrices Pi to vectors and applying any vector 
norm. Since projection matrices are independent of the 
choice of bases, they are better candidates. Distance d3 is the 
L1 norm applied to the difference between the projection 
matrices, after converting these matrices to vectors [10]. 
Distance d4 uses the L1 matrix norm, which corresponds to 
taking the largest column sum.  
2. 3. Low dimensional projection  
The previous steps follow closely the ideas of MSM. 
However, the goal here is not to distinguish between faces 
of different people but to find a low-dimensional mapping 
that represents the distribution of features. Therefore, the 
final step of the proposed technique is finding a low-
dimensional projection that preserves distances in feature 
space. In this paper we compare 4 projection strategies.      

Multidimensional scaling (MDS) is a linear projection 
technique that tries to preserve the pairwise distances 
between points in the original space [4]. MDS has been 
widely used in the social sciences to visualize complex 
relationships based on dissimilarity. 

ISOMAP is a manifold learning algorithm that 
constructs a distance matrix using geodesic distances on the 
feature manifold and then applies MDS to this matrix to 
compute the low-dimensional projection [11].   

Laplacian eigenmaps tries to preserve the proximity of 
nearby points during projection [2]. One must specify a 
weight function Wij that gives the importance of point j in 
determining proximity to point i. A simple choice is Wij = 
1/k for the k nearest neighbors of node i, with the other 
weights set to zero. We denote this version of the algorithm 
as LE. An alternative is to use Gaussian falloff for the 
neighborhood weight. We denote this alternative by LEG. 
 

3. APPLICATION TO DATA WITH WAVES 
 

We apply the proposed technique to two datasets, a 
synthetic dataset containing simulated waves and an 
experimental dataset recorded from the motor cortex of a 
monkey during the execution of a visuomotor task. Both 
datasets contain 10 × 10 images recorded at 1000 frames per 
second.  
3. 1. Simulated waves 
We generated overlapping sinusoidal waves by superposing 
the basic wave form: 

)cos()(),,( ϕω +++= tykxktAtyxW yx  

A(t) is a Gaussian envelope amplitude function with mean 
50ms and variance 30ms. This choice of parameters ensures 
that middle 100ms interval has a dominant wave direction 
and that no more than 30% of the wave energy is carried to 
another window. Adjacent waves overlap by approximately 
60ms. The direction of wave propagation, , is randomly 
selected from the interval [0, 2 ]. The parameters kx and ky 
are computed as cos( ) and sin( ), respectively. The 
parameters ω and ϕ control the speed of wave propagation 
and the phase offset, respectively.  

To test the sensitivity of the approach to the details of 
feature selection, we applied the technique to the simulated 
dataset using four projection techniques with three different 
thresholds in the wave subspace test. A low threshold 
chooses only signals with nearly perfect waves, while 
higher thresholds include features that are less wave-like. 
Distance d1 is used in all cases. ISOMAP is computed using 
25 nearest neighbors, while LE and LEG use 15. The 
Gaussian kernel parameter in LEG is 2. 

Fig. 1 displays the two-dimensional projections for the 
test. The mappings in the top row are computed using a 
rigorous wave detection test. The results suggest well-
defined shapes, but some areas of the manifold do not have 
enough sample points. Applying the wave detection test 
with a very high threshold, as shown in the bottom row, 
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identifies segments with lower correlations as waves. In this 
case, the feature manifold has too many noisy points and the 
shapes of the projections are quite distorted. The middle 
row illustrates a good selection of threshold.   

We also computed the wave direction of each feature 
independently using a Hilbert transform-based method [8].  

The computed wave direction is used to color the projection 
points in all of the figures. The color bar displayed at the 
bottom of Fig. 1 shows the correspondence between wave 
direction and color. The smooth variation of colors in the 
resulting projections confirms that all of the projection 
techniques preserve wave directions.  

Fig. 2 compares the effect of feature space topology on 
the different projection strategies. As expected, distances d1 
and d2 give similar projection shapes independent of the 
projection technique. Laplacian eigenmaps appear to be the 
least sensitive to topology. MDS projections with distances 
d3 and d4 have smooth color variation, but the crossed 
curves indicate that projecting into three dimensions rather 
than two might result in a better projection curve. 

Fig. 3 compares the distance in feature space with the 
distance between the corresponding projections. We analyze 
three of the projection techniques using d1 in the feature 
space and Euclidian distance in the projected space. 

 The projected distance with MDS is always less than 
the original distance, and small distances are closely 
preserved. However, the capacity of the projected space is 
significantly smaller than that of the original feature space, 
and a significant number of distant points are projected in 
relatively close proximity. Thus, geometric interpretation of 
the MDS projections is somewhat problematic.  

ISOMAP, which uses geodesic distances, displays a 
much better-defined relationship between distances in the 
two spaces. Points mapped to nearby locations in projection 
space are most likely to be neighbors in feature space. 
Notice, however, that except for very close points, the 
projected distance is larger than the original distance, 
suggesting a non-planar structure of the feature manifold.  

Laplacian eigenmaps attempt to preserve neighborhood 
relationships but impose no restriction on non-neighboring 
points. Points that are close in the original space remain 
close in the projection, but the reverse is not the case. In 
fact, some points with very large feature space distances are 
mapped to almost identical locations.  
3. 2. Multielectrode recordings of macaque motor cortex 
We also applied the technique to the beta frequency band 
(15 45Hz) of local field potential signals recorded from a 
multielectrode array implanted in the motor cortex of a 
macaque monkey during an instructed target task [8]. Low 
signal to noise ratio and significant volume make this 
dataset difficult to analyze. The dataset is characterized by 
very noisy waves and a single preferred direction, although 
waves from all directions and amplitudes are present.   

Figure 3. Distance d1 in feature space vs. Euclidean distance in 
projection space for the synthetic dataset. Parameters as in Fig. 2.  
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Figure 1. Projections of simulated waves using threshold 0.003 
(A), 0.01 (B) and 0.1 (C). Window size is 70ms, overlap 20ms and 
topology is defined by d1. ISOMAP uses 25 neighbors. LE and 
LEG use 15 neighbors. Points are colored based on computed 
wave direction in [0, 2 ], as shown by the color bar.  
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Figure 2. Projections of simulated waves using different topologies
for the feature space. Window size is 70ms with overlap 20ms and 
threshold is 0.02. Colormap and other parameters as in Fig. 1.  
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Fig. 4 compares the results of the four projection 
techniques with different feature space topologies. ISOMAP 
provides the cleanest results, independent of distance 
measure. Distances d3 and d4 are especially sensitive to 
noise, and LE proved to be unstable using these distances.  

Fig. 5 compares the d1 distance in feature space with 
Euclidian distance in projection space. Observe that very 
few points are close in the feature space, indicating high 
dimensionality and very noisy data. All three projection 
techniques map nearby points in the feature space to nearby 
points in the projection space. Unfortunately, a significant 
number of points that are distant in the feature space are 
mapped to nearby points in projection space. This indicates 
that a 2D projection space has insufficient capacity to 
represent the dataset.     
 

4. CONCLUSION AND FUTURE WORK 
 

This paper applies an MSM strategy to analyze waves. We 
examine the effect of topology and dimension reduction 
algorithm by comparing the results using four feature space 
distance measures and four feature space projection 
methods. All combinations produce good low-dimensional 
mappings of wave direction for synthetic data, but ISOMAP 
appears to do the best job for noisy experimental data.  

The feature space topology can also be changed by 
using a different feature representation. Defining an inner 
product function in the feature space would allow 
projections based on Gram and covariance matrices [9].   
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Figure 5. Distances in feature space with d1 topology vs. distances 
in projection space for monkey Rx dataset. Parameter as in Fig. 4. 
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Figure 4. Projections of motor cortex recordings of monkey Rx 
using threshold 0.01, window size 15ms, and overlap 5ms. LE and 
LEG use 5 neighbors. Colormap and parameters as in Fig. 1.  
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