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ABSTRACT 
 
This paper describes a decision support system for 
determining salient features for CT lung nodule detection 
using an eye-tracking based machine learning technique. The 
method first analyses the scan paths of expert radiologists 
during normal examination. The underlying features are then 
used to highlight salient regions that may be of diagnostic 
relevance by merging visual features learned from different 
experts with a weighted probability function. The framework 
has been evaluated using data from CT lung nodule 
examination and the results demonstrate the potential 
clinical value of the proposed technique, which can also be 
generalized to other diagnostic applications. 
 
Index Terms— Eye tracking, feature selection, image 
processing, image region analysis, decision support system. 
 

1. INTRODUCTION 
 
Lung cancer represents the most common cause of death 
from malignancy in the world due to the late appearance of 
symptoms, which only become apparent when the cancer has 
developed to an advanced stage when further treatment is 
rarely effective. If malignant pulmonary nodules were 
detected earlier, the survival rate could be dramatically 
improved [1]. To increase the survival rate, patients at risk 
(usually smokers older than fifty) are recommended to 
undergo periodic screening programs with low-radiation-
dose spiral computed tomography (LDCT) [2]. LDCT scans 
are highly sensitive for detecting nodules as small as 2 to 
3mm, much smaller than that can be viewed on chest X-rays. 
The use of LDCT, however, generates a large amount of 
images [3]. For this reason, Computer Aided Diagnosis 
(CAD) based on pattern recognition and image enhancement 
techniques to distinguish nodules from normal anatomic 
structures has received increasing attention in recent years 
[4].  

The pre-requisite of developing an effective CAD system 
is to understand the human diagnostic process. In radiology, 
eye-gaze tracking has been used to improve tumour 
detection [5] and provide information on nodule 

misclassifications [6]. Eye-tracking systems can also be used 
to study the common features which attract the radiologist’s 
attention during the diagnosis process.  

The purpose of this paper is to provide a framework 
which can help the radiologists during the diagnosis process 
by automatically highlighting areas of interest. Our method 
analyses the scan path, which consists of a sequence of 
saccades (i.e. fast and ballistic eye movements) from one 
fixation to another during normal radiological diagnosis [7]. 
This analysis allows the extraction of a set of salient features 
from a generic features library. They can then be used to 
identify hot spots (i.e. salient regions in the images, where 
most likely there could be a nodule) during routine LCDT 
examination to provide automatic decision support. 

In this preliminary study, we applied the framework to 
four sets of 10 pulmonary nodule images extracted from 
three multi-slice LDCT exams (all with medical report, three 
of which containing one nodule) and analysed by five 
radiologists. All images were first segmented to extract only 
the lung parenchyma [8]. 
 

2. METHOD 
 
The basic structure of the proposed framework is illustrated 
in Fig. 1, which consists of four modules. First, the eye-
tracker records spatial-temporal information during the 
radiologist’s diagnosis; the data is then used as the input to 
the second module which calculates the fixation points. In 
the following module, salient features based on eye fixation 
are extracted to determine hot spots. These tasks are 
performed by expert radiologists and the last module fuses 
salient regions identified in the previous phase. 

 
2.1. Eye-movement tracking 

 
For eye-tracking, a Tobii ETx50 eye tracker (Tobii, 
Sweden) is used. During the diagnosis process, DICOM 
images are shown on a monitor with a resolution of 
1280x1024; radiologists are able to navigate through the 3D 
LDCT data by using the keyboard. The eye tracking system 
measures the relative position of the pupil and the corneal 
reflection in order to identify the gaze direction. The 
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accuracy of this system is 0.5°, the minimum dwell time for 
recording a fixation is 20ms and the system sample rate is 50 
Hz. At the end of the tracking process, two files from the 
raw data are extracted: one with time-stamped x-y 
coordinates of the gaze points (CF) and the other with the 
time-stamped keyboard events (KF). 

 

 
 
 

 
Fig. 1. A schematic illustration of the proposed processing 

framework. 
 

2.2. Fixation points extraction 
 
As mentioned earlier, a scan path is a sequence of saccades 
between points. A saccade is a rapid voluntary eye 
movement from one point to another and the purpose of 
which is to foveate a particular area of interest in a search 
scene. To calculate the fixations in x-y coordinates, we use 
the CF file. Due to the size of the fovea vision, there could 
be in a range of 23 pixels on the coordinates determined by 
the experimental setup. We then cluster all the points which 
are less then 23 pixels apart in one single fixation; the 
coordinates of this single fixation are equal to the centre of 
mass of all the points. The KF file is used to calculate the z-
coordinate: each time the radiologist presses the key to move 
to and from the slice the z value of the current fixation is 
increased or decreased accordingly. At the end of this 
module, a sequence of fixations is collected and expressed 
by x-y-z coordinates and time duration. 
 
2.3. Salient features analysis 
 
Using fixation points, we extract a set of salient features 
from a features library consisting of 21 texture features. The 
computational framework is largely based on the visual 
saliency algorithm described in [11][12]. These are then 
used to identify important areas in the lung lobes where 
nodules could be found. 
 
2.3.1. Feature Library 
The feature library is divided in five main groups. The first-
order statistics group consists of mean, standard deviation, 
absolute deviation, skewness, and kurtosis, which are used to 
analyse the distribution of the pixels’ grey level.  

In the second group, the spatial dependences of the CT 
value are taken into account by analysing second order 
statistics. The features derived from a set of 20 co-
occurrence matrices of grey level; from the image we extract 
a circular region of 5 pixels radius centred on each fixation. 
This area is first down sampled to  grey level, the 
co-occurrence matrices are then calculated 
using  directions and a distance l ranging from one to 

five pixels. From each co-occurrence matrix, a set of five 
scalar proprieties are computed [9]: energy, entropy, 
maximum, contrast and homogeneity. The mean values over 
all the 20 matrices represent the five features of the second 
group.  

The third group analyses the texture coarseness: a large 
number of neighbouring pixels of same grey level represent 
a coarse texture; a small number indicates a fine texture. 
Run-length parameters are computed to represent the lengths 
of texture primitives (i.e. maximum contiguous set of 
constant grey level pixel on a line) [9]. Using the quantized 
circular regions calculated above we compute for each 
fixation four parameters: short primitive emphasis (spe), 
long primitive emphasis (lpe), grey-level uniformity (glu), 
and primitive length uniformity (plu) as shown below 

spe =  (1) 

lpe =  (2) 

glu =  (3) 

plu =  (4) 

 

where  is the number of all the primitives of all 
directions having length r and grey level a, L the number of 
image grey levels,  the maximum primitive length in the 
image, and K the total number of runs. 

The fourth group contains only the Fractal Dimension 
(FD) feature: if we consider the pixel intensity as the height 
above a plane, the intensity surface of the image can be 
viewed as a rugged surface, and FD represents the 
raggedness of this surface. There are many different 
definitions of fractal dimension; in our approach we use the 
fractional Brownian motion model [10]. 

The groups of features discussed so far use the spatial 
frequencies to describe textures, while the last group studies 
the edge frequencies; any edge detection operator can be 
employed for this purpose. We use the Robert’s operator to 
compute the gradient for all pixels belonging to the selected 
circular region and afterwards the first and the second order 
statistics of edge elements distribution are calculated. In 
particular, the mean and the entropy of the edge strength 
measure the contrast, and the randomness of the distribution. 
The co-occurrence matrix, calculated on the edge direction, 
defines linearity, periodicity and size of the texture [9] 
 
2.3.2. Salient feature extraction 
This step extracts the features of every pixel covered by the 
scan path. The vector represents a 
scan path,  are the fixation coordinates and it  the 
corresponding dwell time.  
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 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 
Images 1 2 1 2 1 2 1 2 1 2 
Mean 0.38 0.11 0.28 0.76 0.77 0.36 0.43 1.00 0.07 0.10 
Standard deviation 0.46 0.37 0.46 0.46 0.46 0.46 0.13 0.10 0.24 0.46 
Absolute deviation 0.30 0.30 0.19 0.19 0.30 0.39 0.24 0.22 0.34 0.30 
Skewness 0.44 0.18 0.19 0.45 1.74 0.30 0.25 0.16 0.81 0.29 
Kurtosis 0.25 0.12 0.14 0.23 0.25 0.23 0.25 0.23 0.25 0.23 
Entropy 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 
Co-energy 0.81 0.16 0.29 0.17 1.78 0.59 0.81 0.58 0.81 1.03 
Co-entropy 0.73 0.26 0.32 0.16 1.49 0.29 0.91 0.61 1.04 1.29 
Co-maximum 1.76 0.17 0.35 0.31 1.65 0.78 0.58 0.37 1.02 0.87 
Co-contrast 0.25 0.21 0.25 0.21 0.25 0.00 0.25 0.20 0.25 0.21 
Co-homogeneity 0.51 0.34 0.43 0.42 0.51 0.10 0.30 0.30 0.18 0.47 
spe 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
Lpe 1.44 0.01 0.05 0.12 0.66 0.14 0.08 0.00 0.06 0.42 
Glu 0.13 0.13 0.10 0.03 0.13 0.13 0.13 0.13 0.13 0.13 
Plu 0.95 0.04 0.10 0.04 1.09 0.26 0.41 0.83 0.95 1.16 
Fractal dimension 3.31 0.89 0.53 1.26 1.64 1.28 0.48 1.30 2.51 1.29 
Contrast 0.31 0.15 0.19 0.68 0.74 0.59 0.19 1.21 0.11 0.25 
Randomness 0.89 0.28 0.14 0.37 0.35 0.37 0.35 0.37 0.00 0.37 
Linearity 0.02 0.02 0.41 0.11 0.24 0.31 0.17 0.63 0.61 0.01 
Periodicity 0.00 0.00 0.10 0.02 0.40 0.05 0.05 0.37 0.40 0.37 
Size 0.05 0.01 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 

 
TABLE I - KL divergences computed in two images by five radiologists, the underlined values are the largest in the column signifying visual saliency 

related to the feature extractor. 
 
Each fixation  has a feature vector 
associated , where  is the number of 
features belonging to the features library. 

Due to the basic characteristics of foveal vision, the 
value of the features on a given fixation has to take into 
account all pixels falling within the foveal field (i.e. a circle 
centred on the fixation with radius equal to 23 pixels). 
Because the visual acuity drops off dramatically from the 
centre of the focus, the feature value on a fixation is 
weighted with a Gaussian function centred on the fixation 
point where sigma is set to 15 pixels so that the value on the 
farthest point from the centre is 0.15. To extract the salient 
features, we analyse the fixation distribution in the feature 
space by taking into account the projection bias which is 
independent of visual search strategies and it is only affected 
by the features distribution on the background. When there 
is an abundance of certain feature value is quite possible that 
the fixation points will land on this value. Such projection 
bias can be eliminated by comparing the distribution of the 
features on the background to that of fixation points; a 
feature is salient when those two distributions differ. First of 
all, the features are quantized to sixteen levels. 
Subsequently,  is defined as the value of the i-th feature 
of the point t, and ,  as the two distribution 
vectors with a number of components equal to the number of 
quantization levels. Each component is computed as  
 

    ,  (5)  
 

where:  
•  is the number of fixations belonging to the scan path,  
• is the dwell time of the fixation t if , and 

0 otherwise, 
•  the number of image points, 
•  is equal to 1 if  , and 0 otherwise. 

There are many methods one can use to measure the 
difference between distributions; in this paper the Kullback-
Leibler (KL) divergence is used, which is defined as 
 

           (6) 
 

where is the number of the subset of features used,  
the number of quantization level,  and  the 
normalized value of the two distributions.  
represents the distance between the distributions, it is 
nonnegative and has a zero value, if and only if 

.  
After computing the distributions, a Genetic Algorithm 

[13] is used to find out the minimum subset of features, with 
the largest KL value, which can unambiguously identify the 
visual attention. A bit string is used as chromosome where 
the i-th bit corresponds to the i-th feature; the bit value is 1 
if this feature is selected, otherwise it is 0. The fitness 
function of a chromosome is the KL divergence computed 
by only using the features with the corresponding bit set to 
1. The algorithm uses a population of 40 organisms. 
Crossover, which is used as recombination operator, which 
takes copies of two selected organisms and swaps substrings 
of equal length between their chromosomes, creating two 
new organisms in the process. Mutation is applied with a 
small probability to randomly alter the value of single 
position in the chromosome string. The optimization 
process, which ends after 50 generations, produces a near 
optimal features set that will be used in the next phase of 
salient region construction. 
 
2.4. Salient regions fusion 
 
After identifying the features space used during the visual 
search, we select as hot spots the set of points which satisfy 
the equation for each feature i and level j. If 
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the scan path is collected from a group of subjects, we can 
use the map of the features derived from each scan path to 
predict salient regions for other images. To this end, we join 
the hot spots originated from different subjects. The 
probability of a pixel being hot is the ratio between the 
number of subjects for whom these pixels belong to a hot 
region, and the total number of subjects. By doing so, the 
skills difference of the subjects is ignored. To overcome this, 
we weight the above ratio so as to take into account both the 
subjects skills and the confidence given to the nodule 
detected during the visual search. 

 
3. EXPERIMENTS AND RESULTS 

 
The proposed framework was evaluated on four sets of 
images extracted from LDCT scans. Two consultants and 
three registrars were recorded during the assessments of 
each set. At the end of the session, the subjects pointed on a 
lung picture where the nodule was and also gave their 
confidence level. For each image, we calculate the value of 

,  and , and the result are shown in 
TABLE I, the larger the value, the more 
discriminating is the feature. It can be seen that there is a 
clear preference on the fractal dimension feature, in which 
case will be the salient feature resulting from the Genetic 
Algorithm optimization process. The results above also 
indicate how the features preference is more evident when 
the subjects locate the nodule during the assessment, less 
noticeable in the first one/two images. This is due to the 
different strategies used by radiologists during their 
diagnosis: first they use a pre-attentive search using a 
parallel visual search to take a first glance of the image; next 
they use an attentive serial search to find out relationships 
among features. 

After extracting the salient features from the images, hot 
spots were identified for each radiologist. An example is 
shown in Fig. 2. By using the weighted probability function, 
the saliency map is built; this map can be used to predict 
salient regions for other images in the same diagnostic 
contest. 
 

4. CONCLUSIONS 
 

In this paper, we have described a framework based on 
visual search scan-paths to identify both the set of salient 
features utilized and the strategies involved in the experts’ 
assessment. The radiologist’s attention (fixation points), 
together with information on the background, are used to 
analyse the images without being affected by the projection 
bias. The salient features are then used to build salient maps 
for analyzing other similar images. The method was 
evaluated on 4 sets of CT scans and the results have shown 
that there is an evident features preference especially when 
the nodule is hit. After the salient map is built using the 4 
sets of CT, we have applied it to 5 different sets of CT 

scans, each containing a nodule. In this way, we have 
confirmed that all the 5 nodules belong to the area 
highlighted as salient. This framework can be used both to 
help the experts in their diagnosis by highlighting areas 
where there could be nodules and to train novices to look at 
the right features during the diagnosis process. The results 
show promising strength in identify intrinsic visual attention. 
Being a general framework, it can also be employed in other 
clinical applications for computer assisted diagnosis. 
 

 
 

Fig 2. Salient regions of the four radiologists superimposed on the images 
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