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ABSTRACT
A pulmonary nodule is the most common manifestation of lung can-
cer. Lung nodules are approximately-spherical regions of relatively
high density that are visible in X-ray images of the lung. Large (gen-
erally defined as greater than 1 cm in diameter) malignant nodules
can be easily detected with traditional imaging equipment and can
be diagnosed by needle biopsy or bronchoscopy techniques. How-
ever, the diagnostic options for small malignant nodules are limited
due to problems associated with accessing small tumors, especially
if they are located deep in the tissue or away from the large airways;
therefore, additional diagnostic and imaging techniques are needed.
One of the most promising techniques for detecting small cancerous
nodules relies on characterizing the nodule based on its growth rate.
The growth rate is estimated by measuring the volumetric change of
the detected lung nodules over time, so it is important to accurately
measure the volume of the nodules to quantify their growth rate over
time. In this paper, we introduce a novel Computer Assisted Diagno-
sis (CAD) system for early diagnosis of lung cancer. The proposed
CAD system consists of five main steps. These steps are: i) segmen-
tation of lung tissues from low dose computed tomography (LDCT)
images, ii) detection of lung nodules from segmented lung tissues,
iii) a non-rigid registration approach to align two successive LDCT
scans and to correct the motion artifacts caused by breathing and pa-
tient motion, iv) segmentation of the detected lung nodules, and v)
quantification of the volumetric changes. Our preliminary classifica-
tion results based on the analysis of the growth rate of both benign
and malignant nodules for 10 patients (6 patients diagnosed as ma-
lignant and 4 diagnosed as benign) were 100% for 95% confidence
interval. The preliminary results of the proposed image analysis have
yielded promising results that would supplement the use of current
technologies for diagnosing lung cancer.

Index Terms— Diagnosis of lung cancer, lung nodule segmen-
tation, detection of lung nodules.

1. INTRODUCTION

Lung cancer remains the leading cause of cancer-related death in the
USA. In 2006, there were approximately 174,470 new cases of lung
cancer and 162,460 cancer–related deaths [1]. An early diagnosis
of cancer can improve the effectiveness of treatment and increase
the patient’s chance of survival [1, 2]. Specifically, reports by Mar-
tini et al. [2], and the National Cancer Institute’s SEER program [3]
demonstrated that patients identified with smaller T1 tumors had a
significantly higher survival rate than patients with larger T1 tumors,
which implies that early diagnosis of malignant tumors significantly
decreases cancer patient mortality. Thus, there is an urgent need
for new technology to diagnose small, malignant lung nodules early
as well as large nodules located more than 4 cm away from large
diameter airways since current technology, i.e. needle biopsy and
bronchoscopy, fail to diagnose those cases.

New medical imaging modalities, including Low-Dose Com-
puted Tomography (LDCT) and Positron Emission Tomography (PET)
scans, allow for detecting smaller pulmonary nodules at earlier stages
than conventional chest X–rays [4]. Various computational methods
have been developed for monitoring the lung nodules detected in CT
scans [5]. However, these methods do not take into account the ef-
fects of large deformation in the lung tissues due to breathing and
the heart beating. In addition, these methods are not suitable for all
types of lung nodules such as cavity and ground glass nodules and
these methods require significant user interaction which makes them
difficult for use by clinical practitioners.

2. PREVIOUS WORK

2.1. Segmentation of the lung tissues from LDCT images

There exist many techniques for lung segmentation in CT images.
Sluimer et al. [6] presented a survey on computer analysis of the
lungs in CT scans. The survey addresses registration of chest scans,
segmentation of pulmonary structures, and their applications. Hu
et al. [7] proposed an optimal gray level thresholding such that a
threshold is selected using unique data set characteristics. All exist-
ing methods accurately segment normal lung tissues from low dose
computed tomography but become unreliable when the lung density
is affected by severe pathology of tissue attached to the lung walls.
However, dense pathologies are present in approximately one fifth
of the clinical scans, and it is vital for computer detection and quan-
tification of abnormal areas that these pathologies are not missed in
the initial segmentation [6].

2.2. Nodule registration

One of the most compelling motivations for identifying a potential
malignant nodule is to assess its growth rate. To quantify the growth
rate of a nodule, one must be able to measure the volume of nodules
and to identify the corresponding nodules in a follow-up scan. The
principal difficulty in estimating the nodule growth rate is automatic
identification or registration of corresponding nodules in follow-up
scans. Registration of pulmonary nodules is challenging due to their
large displacement between the successive CT scans that may be
caused by varying respiratory volumes and patient positioning. Due
to these reasons, all the previous methods presume direct registration
of nodule vs. nodule which is difficult to achieve, and all the previ-
ously reported systems rely heavily on user intervention for registra-
tion [5, 8].

2.3. Segmentation of the lung nodules

At present, segmentation of pulmonary nodules is under extensive
study. Typical conventional techniques are based on fitting a Gaus-
sian model to empirical data [9], but this approach becomes a chal-
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lenge if initial measurements are corrupted with outliers and margin-
truncation from neighboring structures. To meet these challenges,
Okada et al. [10] (Siemens Corporation Research, Inc.) proposed an
anisotropic intensity model fitting with analytical parameter estima-
tion. Zhao et al. [11] proposed to segment 2D and 3D nodules based
on thresholding the voxel intensity. Their algorithms accurately seg-
ment well-defined solid nodules with similar average intensities but
become unreliable on cavity or non-solid nodules.

3. METHODS

Our goal is to develop and clinically validate a new image-analysis-
based system for automatic follow up of detected nodules. This
system will help in early diagnosis of malignant lung nodules, es-
pecially if they are located deep in the tissue or away from large
airways. To achieve this goal, we propose the system shown in
Fig. 1. The successive CT scan data sets taken at different times pass
through several stages of processing (e.g., determination of the nod-
ule location either manually by radiologist or automatically using
our previous lung CAD detection system [12], lung segmentation,
registration, etc. ) to quantify the volumetric changes in the detected
lung nodules.

Fig. 1. Proposed system for automatic follow up of detected lung
nodules for early diagnosis of malignant nodules.

3.1. Automatic detection of lung nodules

Automatic diagnosis of lung nodules for early detection of lung can-
cer is the goal of a number of screening studies worldwide. With the
improvements in resolution and scanning time of low dose chest CT
scanners, nodule detection and identification is continuously improv-
ing. We developed a new template for nodule detection using level
sets which describes various physical nodules irrespective of shape,
size and distribution of gray levels. The template parameters are es-
timated automatically from the segmented data- no a priori learning
of the parameters density function is needed. We showed quantita-
tively that this template modeling approach drastically reduces the
number of false positives in the nodule detection, thus improving the
overall accuracy of CAD systems. See [12] for more detail about
this approach.

3.2. Lung segmentation

Our goal is to accurately segment the lung tissues from the back-
ground in such a way that the lung borders approach closely the
“ground truth” borders outlined by a radiologist. By grayness, some
lung tissues such as arteries, veins, and bronchi are very close to the
chest tissues. Therefore, the segmentation cannot be based only on
image signals but has to account also for 3D spatial relationships be-
tween signals and region labels in order to preserve the details. The
main idea of the proposed segmentation algorithm is based on ac-
curate identification of both the spatial interaction between the lung
voxels and the intensity distribution for the voxels in the lung tis-
sues (Fig. 2). We proposed a new technique for unsupervised seg-
mentation of multi-modal grayscale images such that each region-of-
interest relates to a single dominant mode of the empirical marginal
probability distribution of gray levels. We follow the most conven-
tional description of the initial images and desired maps of regions

by a joint Markov-Gibbs random field (MGRF) model of indepen-
dent image signals and interdependent region labels, but we focus
on more accurate model identification [13]. To better specify region
borders, each empirical distribution of image signals is precisely ap-
proximated by a linear combination of Gaussians (LCG) with pos-
itive and negative components [13]. We modify the Expectation-
Maximization (EM) algorithm in [13] to deal with the LCG and also
exploit our novel EM-based sequential technique to get a close initial
LCG-approximation to start with. The proposed technique identifies
individual LCG-models in a mixed empirical distribution, includ-
ing the number of positive and negative Gaussians. Then the initial
LCG-based segmentation is iteratively refined using the MGRF with
analytically estimated potentials [13]. The analytical estimation is
the key issue that makes the proposed segmentation accurate and fast
and therefore suitable for clinical applications (mathematical details
of this approach are presented in [13]). Figure 3 shows the segmenta-
tion results of three LDCT data sets using the proposed segmentation
approach.

Fig. 2. Illustration of spatial interaction and intensity models.

Fig. 3. 3D segmentation results of lung tissues from LDCT images.

3.3. Lung registration

The main steps of our registration technique being essential for quan-
tifying the volumetric changes (the growth rate) in the detected lung
nodules are outlined below.

3.3.1. Global registration

In this paper, we present a novel approach to align 3D data of a
textured object (lung) with a given prototype (reference data) based
on learning prior visual appearance model of the reference data. In
the medical imaging context, learning the visual appearance model
means to model the relation between the voxels’ signals (gray levels)
and represent this relation in numbers, large numbers mean strong
relation. In order to achieve this goal, we use Markov-Gibbs random
field with pairwise interaction [13] to model the relation between
the voxels in the 3D data sets after normalizing their signals. The
reference and target data are normalized using the cumulative em-
pirical probability distributions of their signals to account for mono-
tone (order-preserving) changes of signals (e.g. due to different il-
lumination or sensor characteristics). The similarity to the proto-
type (reference data) is measured by a Gibbs energy [14] of signal
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co-occurrences in a characteristic subset of voxel pairs derived au-
tomatically from the prototype. An object is aligned automatically
by an affine transformation that maximizes the similarity using the
gradient search algorithm.

MGRF based appearance model: Given a neighborhood sys-
temN and potential V, the Gibbs probability P (g) is exponentially
proportional to Gibbs energy (E(g)) of an object g aligned with the
learned prototype (reference data) g◦ on 3D lattice Rp is specified
with the Gibbs energy:

E(g) = |Rp|VFT(g) (1)

where FT(g) is the vector of scaled empirical probability distribu-
tions of signal co-occurrences over each clique family, |Rp| is the
cardinality of Rp, and T indicates transposition.

To identify the Gibbs energy in Eq. (1) which describes the ap-
pearance model of 3D texture prototype, we have to estimate the
neighborhood N and the potential V from g◦. Using the analytical
approach similar to that in [14], the potentials are approximated with
the scaled centered empirical probabilities:

V =
(
F(g◦)− 1

Q2
U
)
;

where U is the vector with unit components and Q is the number of
gray levels.

To find the characteristic neighborhood set N , the relative en-
ergies for the clique families, i.e. the scaled variances of the cor-
responding empirical co-occurrence distributions, are compared for
a large number of possible candidates. To automatically select the
characteristic neighbors, we consider an empirical probability dis-
tribution of the energies as a mixture of a large “non-characteristic”
low-energy component and a considerably smaller characteristic high-
energy component: P (E) = πPlo(E) + (1 − π)Phi(E). Both the
components Plo(E), Phi(E) are of arbitrary shape and thus are ap-
proximated with linear combinations of positive and negative Gaus-
sians [13]. For more detail see [14]

Appearance-based registration: The object g is affinely trans-
formed to maximize its relative energy E(ga) = VTF(ga) under
the learned appearance model [N ,V]. Here, ga is the part of the ob-
ject image reduced to Rp by the affine transformation. Figure 4(d)
shows checkerboard visualization between the data sets shown in
Fig. 4(a) and the aligned data set shown in Fig. 4(c) to demonstrate
the effect of the motion of the lung tissues. It can be seen that the
connectivity, at the edges of the lung, between the two volumes is
not smooth when using global model only, this is due to the local
deformation which comes from breathing and heart beats

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Reference data, (b) target data, (c) transformed data using
12 degree of freedom affine transformation, (d) checkerboard visual-
ization to show the motion effect of the lung tissues, (e) our non-rigid
regeneration results, and (g) checkerboard visualization to show the
quality of the proposed local deformation model.

Local motion model: To handle local deformations, we pro-
pose a new approach based on deforming the object over evolving

closed and equi-spaced surfaces (iso-surfaces) to closely match the
reference data [15]. The evolution of the iso-surfaces is guided by
an exponential speed function by minimizing the distances between
corresponding pixel pairs on the iso-surfaces on both images [15].
The normalized cross correlation is used to find the correspondent
points between these iso-surfaces [15].

The first step of our approach is to generate the distance map
inside the object using fast marching level sets [16]. The second
step is to use this distance map to generate iso-surfaces. Note that
the number of iso-surfaces, which is not necessarily the same for
both images, depends on the accuracy and the speed required by the
user. The third step consists in finding the correspondences between
the iso-surfaces using normalized cross correlation. The final step is
the evolution of the iso-surfaces; here, our goal is to deform the iso-
surfaces in the first data set (target image) to match the iso-surfaces
in the second data set. Figure 4(e, f) shows the results after applying
the local deformation model, it shows the connectivity, at the edges
of lung region, and between the two volumes is smoother when using
the proposed local deformation model.

The main advantage of the proposed local deformation model is
its generality ( e.g., is not limited to a certain medical image modal-
ity), computational speed, and finally its accuracy in preserving the
local shape following the registration procedure.

3.4. Segmentation of lung nodules

The fourth step of the proposed framework is to accurately segment,
after the data alignment, the lung nodules from the CT data. To
separate each pulmonary nodule from its background in a CT chest
image, we will use two new adaptive probabilistic models of visual
appearance of small 2D and large 3D pulmonary nodules to control
the evolution of a deformable boundary [17, 18]. The prior appear-
ance will be modeled with a translation and rotation invariant MGRF
with pairwise interaction of voxel intensities. The MGRF is analyti-
cally identified from a set of training nodules. Visual appearance of
the nodules and their background at each current step of evolution
will also be represented with a mixed marginal probability distribu-
tion of voxel intensities in chest images to be modeled with the LCG
models. Details of these appearance models are given in [17, 18].
Figure 5 shows the segmentation results of the proposed lung nodule
segmentation approach.

A

C

S
(a) (b) (c) (d)

Fig. 5. 3D segmentation of pleural attached nodules; results are pro-
jected onto 2D axial (A), coronal (C), and saggital (S) planes for
visualization: 2D profile of the original nodule (a), pixel-wise Gibbs
energies (b), our segmentation (c), and (d) the radiologist’s segmen-
tation.
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4. EXPERIMENTAL RESULTS AND CONCLUSIONS

The proposed system tested on the clinical datasets collected from
the 10 patients to illustrate the significance of our methodology of
measuring the growth rate. The data in this paper are collected
from subjects over 60 years of age with positive smoking history
(more than 10 packs/year). These subjects underwent screening with
LDCT every three months for one year, so each patient has five scans
with a slice thickness of 2.5 mm reconstructed every 1.5 mm, scan-
ning pitch 1.5mm, KV 140, MA 100, and F.O.V 36 cm. These 10
patients were diagnosed by biopsy (ground truth); of them, 6 patients
have malignant nodules and 4 have benign nodules.

Figure 6 shows the estimated growth rate for two detected lung
nodules before and after data alignment. It is clear from Fig. 6 that
our alignment algorithm facilitates accurate evaluations of changes
in the nodule size over time. Moreover, the alignment would help
radiologists/doctors to track the direction of nodule growth which is
crucial for the treatment by surgery or radiation. Also, it is apparent
that the malignant nodule doubles in size in a time period less than or
equal to 360 days, while the volumetric changes in the benign nodule
are very small (maximum 6% over one year, see Figure 7). Figure 7
shows volumetric changes for 6 malignant and 4 benign nodules. It
is clear that the growth rate of the malignant nodules is higher than
the growth rate of the benign nodules, and this encourages us to use
the growth rate as a discriminatory feature between the malignant
and benign nodules.

Our preliminary diagnosis results based on the analysis of the
growth rate of both benign and malignant nodules for 10 patients
(6 patients diagnosed as malignant and 4 diagnosed as benign) were
100% correct under the 95% confidence interval. These results show
that the use of the proposed image analysis techniques could be a
promising supplement to current technologies for diagnosing lung
cancer. In our future work, we aim to build a probabilistic model
for the growth rate of both benign and malignant nodules from 200
patients; this probabilistic model will help us to develop a complete
image based software system for automatic diagnosis of lung cancer.

Fig. 6. The results of the proposed follow up registration algorithm
for two patients (patients # has maliginant nodule and patient #2 has
benign nodules) over one year
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