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ABSTRACT

Two statistical measures of similarity, for data association and 
tracking moving objects in sequences of color images, are derived 
and their performance is compared with normalized cross-
correlation. Both methods use an F-distributed test statistic in a 
hypothesis test, which permits association thresholds to be set to 
give the desired (theoretical) false-association rate. One of the 
methods matches the performance of normalized cross-correlation, 
in the test data used, and is computationally less expensive. 

Index Terms— Image motion analysis, Spatial filters, Image 
matching, Image classification, Tracking. 

1. INTRODUCTION 

Automatic processing in surveillance systems (e.g. [1]), for finding 
and following potential threats in image sequences or video 
streams, is typically composed of detection and tracking 
components. The detection component identifies regions of 
change, from one image (or frame) to the next [2,11]; while the 
tracking component fuses information from consecutive frames 
together over time. For analysis and design purposes, tracking may 
be factored into association and estimation processes. Association 
is the process whereby all detections due to a given target are 
identified; whereas estimation uses the associated detections to 
reduce position and velocity errors. This paper is primarily 
concerned with the problem of association. 

Association and estimation are not independent processes, as 
good track estimates make it easier to find the correct detection; 
and correct association prevents false measurements, absent target 
detections, or detections due to other targets, from degrading track 
estimates. Tracking in high-resolution feeds from optical sensors is 
perhaps unique in that the target detection characteristics (size, 
shape, texture, and possibly color) are typically well defined in the 
digitized data matrix (i.e. the image). The effective utilization of 
this information greatly simplifies the association problem. This 
observation has, in part, motivated the development of track-
before-detect algorithms [3], which operate on features directly in 
the discrete measurement space instead of extracted peaks. In 
principle, reliable association makes it possible to find the 
detection due to a given target anywhere in the measurement 
space, without a prior estimate of the target’s state. 

The problem of association is closely related to the problems 
of automatic classification [4], pattern recognition [5], image 
registration [6] and object detection [7]. The methods used to solve 
these problems vary widely; however, the use of templates and 
some measure of “similarity” [5,7,9], “distance” [4], “correlation”, 

“alignment”, “coincidence” or “correspondence” [6], is common. 
The technique of cross correlation and methods derived from it, 
such as normalized cross-correlation and normalized covariance 
[6,8], may be used to align a portion of an image (or signal) with a 
template. The translation which maximizes the similarity measure 
is taken to be the most likely. Other methods such as Sum of 
Squared Differences (SSD) [12,13] and Sum of Absolute 
Differences (SAD) [14] are also commonly used (these values are 
minimized, not maximized). The SAD method is generally favored 
in real-time image processing applications because its low 
computational complexity allows it to quickly process large 
volumes of data. A number of alternative methods have also been 
proposed [7,9]. Two new methods [10] are described below. Data 
sets of varying degrees of difficulty are given, and performance of 
the methods is discussed, relative to each other and to normalized 
cross-correlation.

2. PRELIMINARIES 

Image data are represented using a three dimensional array where 
, ,I i j k  is the intensity of the th color at the pixel in the th

row and th column. Consider two images 
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1I )
are carried forward and used as templates during association when 
a later frame ( 2I ) is received. All previous detections in 1I  are 

correlated with all current detections in 2I . The term “correlated” 
is used here to collectively refer to all processes described below, 
which involve the alignment of the two detections by maximizing 
a Measure Of Similarity (MOS). The alignment process slides the 
template through all vertical and horizontal translations ( a  and 

) that keep the centre of  within the box defining . The 
translation for which the MOS is maximized is selected, and the 
b 1D 2D
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maximum value retained. A faster (but less reliable) correlation 
process is to use only one translation, so that the centers of the 
detections coincide (not investigated here).

Even when there is only one detection in each image, 
association is not unambiguous, if the possibility of false alarms, 
and variable target visibility and variable target existence are 
considered. For this reason, a way of determining the (minimum) 
thresholds for the MOS is needed, preferably by theoretic means. 
Methods A and B described below, provide a statistical basis for 
setting the threshold, which may be set to give the desired false-
association rate, when the null hypothesis is indeed true. When 
multiple detections are present a so-called “greedy” assignment 
algorithm is used, with the test statistic used as the MOS. 

3. NORMALIZED CROSS-CORRELATION 

Normalized cross-correlation ( 12 ) is preferable to (standard) 

non-normalized correlation ( ), not only because 12R 12  bounded 
between -1 and +1, which facilitates the arbitrary selection of a 
threshold (e.g. 0.9), but it also has been found to be less likely to 
yield false peaks than its non-normalized counterpart [8,9]. When 
processing non-zero-mean data such as images, the mean is usually 
first subtracted using 
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where , i.e. the number of 

pixels within the analysis window, for a given color. The 
normalized cross-correlation coefficient, for multiple colors is, 
then computed using 
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for all displacements  of interest (see previous section), e.g. ,a b

2

2

uprmax max lwr
1 12a i i i i  (3a) 

and
uprmax max lwr

1 12b j j j j . (3b) 
The summations are truncated where the analysis window extends 
beyond the image boundaries. 

4. METHOD A 

A linear model is used to describe the appearance of the target 
from one frame to the next, 

2 1, , , ,J i j k k J i j k , (4) 
where the error term  is Gaussian-distributed, zero-mean, white 

noise, i.e. 2N 0, , and the indices are confined to the 

detection box. The color-dependent parameter  is used to model 
changes in illumination, reflectivity and sensor sensitivity; while 
the color-independent parameter 2  is used to model all other 

unknown causes of intensity fluctuation. Their Maximum 
Likelihood Estimates (MLEs) are computed using  
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(a normalizing factor) and 
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although, the un-biased form of the variance is used in what 
follows, i.e. 2 2ˆ 1N N . From the theory of General 
Linear Models (GLMs), if  

2 2 2ˆ 1k k k  (8) 
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where 2 v  is the chi-squared distribution with v degrees of 
freedom.

Dividing (9) by (11) cancels 2  furthermore, dividing the 
numerator and the denominator by their respective degrees of 
freedom, yields a test statistic that is distributed according to 
Snedecor’s F distribution, i.e. 
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ˆ F , 1
K K
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Z k k k k K K N . (12) 

The null hypothesis is that 0k  for all , i.e. that the two 
detections are orthogonal. If the null hypothesis is rejected then the 
two detections are declared to be similar. The 

k

AZ  statistic is 
evaluated at all feasible displacements by translating one of the 
image portions relative to the other, as done in (2), prior to least-
squares fitting. 

5. METHOD B 

This method begins with the null hypothesis, that both detections 
contain only zero-mean Gaussian-distributed noise, i.e. 

2
1 , , N 0,J i j k  and 2

2 , , N 0,J i j k . (13) 

While this is a reasonable assumption for acoustic measurements 
[9], it is only reasonable for images after high-pass filtering, or 
mean subtraction, as in (1). Summing then squaring (13), and 
differencing then squaring, 1J  and 2J , yields 
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2 2 2
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2 2 2

1 2, , , , 2 1J i j k J i j k , (15) 

respectively. From the reproductive property of chi-squared 
variables, summing these quantities over the analysis window, and 
over all colors, then dividing the former by that latter, cancels 2

and results in the following F-distributed test statistic: 
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Note that BZ  is equivalent to MZ  in [9], when =1K  in (16) and 

=2M  in [9]. The test statistic BZ  is computed at all candidate 
displacements using 
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This test statistic is evaluated and the zero-mean hypothesis 
tested. If the test statistic is significantly larger than would be 
expected, under the null hypothesis, then the null hypothesis is 
rejected. This test statistic is powerful and selective, as only 
similar and well-aligned objects fail the test when the size is set 
low. This is due to the fact that the denominator approaches zero 
for perfectly aligned images (making BZ very large) while it 
remains large and of similar magnitude to the numerator when they 
are misaligned (keeping BZ  close to unity). Intense detections are 

also highly likely to result in large BZ  values because the sum in 
the numerator is large. 

While methods A and B both provide a theoretical basis for 
setting the association threshold – to give the desired test size – 
empirical tuning is still required to give an acceptable false 
association rate in real environments (where the null hypotheses 
are never entirely true) and a satisfactory probability of correct 
association for real targets of interest. 

6. RESULTS 

The methods were compared using an approximately equal number 
of easy (textured background) and hard (cluttered background) 
data sets, giving rise to a total of 124 detections for analysis. All 
images were captured and processed using 8 bit (RGB) color. No 
thresholds were used to process the data; as a consequence, the 
most likely association hypothesis was always chosen, regardless 
of its magnitude. Examples of 2I are shown in Figure 1 and Figure 
3. A change detector based on the method described in [2] was 
used to identify the detections. For large displacements between 
frames, this detector usually identifies two detections – one for the 
departing object and one for the arriving object. The detection 
boxes are drawn in white. Every detection in 1I  was correlated 

with every detection in 2I  using the methods described above, 
and the most likely assignment hypotheses selected. This was done 
independently, on a pairwise basis, and no attempt was made to 
produce a global multi-target assignment solution. The assignment 
success rate (see Table 1) was determined by visual inspection. 
Only detections containing foreground objects in 1I  were 
considered; detections on empty background or false alarms were 
not considered. Detections in 1I  with no detection in 2I , due to 
detector error, were also disregarded. Sample results of association 
computations are shown in Figures 2 and 4. 

TABLE 1. Assignment success rate.

Easy. 
Mean Sub. 

Easy. 
Mean Not Sub. 

Hard. 
Mean Not Sub. 

AZ 56% 80% 33%

BZ 59% 84% 56%

12 59% 84% 54%

FIGURE 1. Easy example image. 

FIGURE 2. Easy example results. 
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FIGURE 3. Hard example image. 

FIGURE 4. Hard example results. 

7. DISCUSSION 

Subtracting the mean, prior to correlation, degrades the 
performance of all methods significantly, it is therefore not 
recommended. However it was noted, for all methods, that mean 
subtraction does increase the difference between the MOS for the 
worst detection and the best detection which potentially makes it 
easier to set thresholds to optimize the association behavior. The 
performance of the BZ  and 12  methods were similar; both 

outperformed the AZ  method. The AZ  and BZ  methods both 

yield sharper peaks and flatter backgrounds than the 12  method, 
in the correlation matrices (lower row of Figures 2 and 4) although 
this does not necessarily mean improved performance. The top left 
image in these figures is a given detection in 1I ; the remaining 

images are the portion of 2I  which the maximize the MOS. The 

three right-most columns are for AZ , BZ  and 12 , respectively. 

In Figure 4 only BZ  yields the correct result; while AZ  associates 
with the background – a common problem for all methods. Judging 
from the (model) implementation used to process these data, AZ
is approximately three times slower than BZ ; while BZ  is 

approximately 30% faster than 12 . The latter observation is 
expected, as (17) requires fewer floating-point operations than (2). 
Both BZ  and 12  can be computed very efficiently using circular 
buffers to compute moving averages (not implemented here).

8. CONCLUSION 

Methods A and B are based on hypothesis tests, with the test 
statistic used as a measure of similarity (MOS). Like normalized 
cross-correlation, method B provides an effective means of 
associating similar objects. The low computational complexity of 
method B makes it an attractive alternative to normalized cross-
correlation in real-time applications. 
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