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ABSTRACT

This paper presents an alternative approach to existing and widely
used correlation metrics through the use of orientation information.
The gradient field correlation method presented here utilises Deriva-
tive of Gaussian (DoG) operators for estimating directional deriva-
tives of an image for two matching applications: classical planar
object detection and point correspondence matching. The exper-
imental results confirm that a suitably normalised gradient vector
field, which emphasises gradient direction information in an im-
age, leads to better selectivity when applied to classical template
matching problems. For the case of establishing point correspon-
dences, combinations of gradient vector field metrics yield higher in-
lying match percentages (by RANSAC) relative to normalised cross-
correlation with little extra computational cost, particularly at smaller
patch sizes. It is also shown that pixel-wise field component normal-
isation is critical to the success of this approach.

Index Terms— Gradient vector fields, correlation, template match-
ing, object detection, point correspondence

1. INTRODUCTION

Many matching and object recognition problems in computer vision
require a measure of the quality of the match, or a match metric be-
tween an image template and the possible image patches in which
the template is to be located. In the case that the instance of the
template might be found anywhere in a target image, the use of cor-
relation as the measure of match leads naturally to the use of 2D
cross-correlation, which is widely used in block-based motion esti-
mation, as well as being a generic, simple method for planar shape
recognition. Its widespread use is partly because of its ease of imple-
mentation, and because Fourier theory allows cross-correlation on
large patch sizes to be efficiently performed in the discrete Fourier
domain.

Patch correspondence is used as the basis of recovering 3D ge-
ometry from multiple camera views [1], for super-resolution [2, 3],
for image mosaicing, and may also be used for appearance-based
image retrieval. Furthermore, as a match method, no prior infor-
mation is required, and the technique of cross-correlation thus often
serves as a component in more sophisticated techniques for feature
extraction and matching.

The use of orientation information in correlation based matching
methods has been suggested in the literature [4, 5, 6, 7] as an alter-
native to the intensity correlation methods, giving more emphasis
to the ‘form’ rather than the fragile brightness constancy assump-
tion. Orientation based matching is also used as the basis of Scale
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Invariant Feature Transform (SIFT) [8], a very popular technique for
achieving partial invariance to scale and orientation changes between
template and target image.

Our purpose in this paper is to suggest and evaluate the incor-
poration of orientation information in correlation matching using
little more than the standard accumulate and sum primitives. This
makes the algorithm implementation particularly simple: the simi-
larity metric is extracted from field components of gradient field im-
ages using accumulate and sum operations, and with no early thresh-
olding. The use of gradient information improves the selectivity of
the algorithms as it increases the weighting given to the shape of the
object or region being matched as conveyed through gradient orien-
tations.

2. CORRELATION METRIC

The basis of using correlation as a pattern matching method lies in
determining the degree to which the object under examination re-
sembles that contained in a given reference image. The degree of
resemblance is a simple statistic on which to base decisions about
the object (further discussions on this can be found in [9]). The so
called normalised cross-correlation method is a widely used match
measure in correlation based pattern recognition. For digitised im-
age patches f and g, the normalised cross-correlation measure of
match is defined as

M(f, g) =

�
(i,j) fij · gij��

(i,j) f2
ij ·
��

(i,j) g2
ij

(1)

In practice, the algebraic mean of each patch is removed prior to
computing this metric. Patches taken from different images are thus
considered as vectors and the ‘dot product’ estimation finds the an-
gle between these vectors in N dimensional space where N is the
number of pixels in a patch. Normalisation by the standard devia-
tions is equivalent to a normalisation by vector length, and gives the
cosine of the angle between the vectors as a bounded real number
between -1 and 1.

Cross correlation also has a well known statistical interpretation
found in multivariate analysis, and may be shown to represent an
underlying multivariate Gaussian model of statistical variability for
the template and patch in which the deviation along each compo-
nent (pixel) of the Gaussian is assumed to have equal variance and
diagonal covariance matrices (pixel-wise independence).

3. GRADIENT FIELD MATCHING

Oriented filters, such as spatial Gabor functions, are thought to play a
significant role in biological vision, and particularly for distinguish-
ing form (shape). A generic probabilistic framework has previously
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been suggested in [7] for locating planar shapes from gradient field
observations. In this work, we assume a set of vector samples at
known 2D image locations (B,X ) and a Gaussian form for disper-
sion in the magnitude of the vector difference between the observed
field and the expected gradient field, μ(x(i)|S, tc; Θ0). A plausible
model for the joint likelihood function is thus derived as

f((B,X )|tc) =
1

K2

N�
i=1

exp{|b(x(i)) − μ(x(i)|tc)|2/2σ2
b} (2)

where b(x(i)), i ∈ {1, ..., N}, are the gradient vector field obser-

vations at pixel locations x(i), K2 is the normalising constant for a
multivariate Gaussian, and σb is the standard deviation of the magni-
tude deviation. Equation (2) assumes that the observed field differs
from some expected field μ(x(i)|tc), which in turn is dependent on
the operators used to estimate image gradients and is conditioned on
shape position (tc). Taking the natural logarithm of Equation (2),
and discarding the small variations caused by the template and the
constant terms, the main inference problem to locate a known object
is given as follows:

topt = arg max
tc

�
N�

i=1

b(x(i)) · μ(x(i)|tc)

�
(3)

In this paper, the first partial derivatives of a two dimensional
Gaussian, taken along the x and y Cartesian axis directions are used
for the estimation of the gradient fields. First, an observation about

Fig. 1. Methodology for normalised gradient template matching

Equation (3): for each candidate position vector, tc, the function to
be maximised is computed by summing the dot products between the
gradient field values of the observed image space and the expected
gradient field for the given shape around that candidate point. For
scalar fields, this collapses to cross-correlation, which upon scaler
fields is less selective than that of a vector field matching opera-
tion. A further improvement to this method is achieved by including
a divisive normalisation term on gradient components at each pixel
which is derived in [7]. A comparison of divisive normalisation with
“standard” feature vector normalisation is presented in Table 1. This
normalisation can be shown to correspond to a statistical model of
gradient field behaviour in which object background contrast vari-
ations drawn from Gaussian distributions are permitted. Applying
the normalisation to Equation (3) and considering that b = (bx, by)
and μ = (μx, μy), the (single-object) detection problem is then ex-
pressed as

topt = arg max
tc

�
N�

i=1

bx(x(i))μx(x(i)|tc) + by(x(i))μy(x(i)|tc)

Z
(i)
0

�

(4)
and the normalisation term in the denominator is defined as

Z
(i)
0 = α + |b(x(i))| = α +

�
b2
x(x(i)) + b2

y(x(i)) (5)

where α is a constant factor and is proportional to the highest inten-
sity value in the input images. Note that the template (or the expected
gradient field) μ(x(i)|tc) is assumed to be previously normalised. It
is emphasised that the normalisation here is quite different to the de-
nominator of Equation (1) because the components of the gradient
vector at each pixel are individually normalised to have unit length
before the summation is performed across the patch.

4. EXPERIMENTS

4.1. Object detection experiments

The first practical performance issue we address in natural images
is the selectivity of matching in vector fields, and the noise stability
under quite typical conditions, on a rather difficult matching prob-
lem of matching a specific pen cover within a cluttered image (see
Fig. 2). The experiments start with converting the original colour

(a) (b)

Fig. 2. The detection problem, (a) Cluttered input image (b) Tem-
plate (pencover) taken from a separate image, therefore contains
some distortion

image into a grey-scale representation, in this case, by extracting the
green channel. For this matching problem where one of the pen cov-
ers is sought, the mask is taken from a different image under a small
degree of affine transformation. The studies are carried over images
with four different Gaussian noise levels, and for each noise level
fifty experiments are performed. For each noisy image, three meth-
ods are applied: scalar cross-correlation, gradient vector matching
and gradient magnitude matching (Compact Hough Transform with
magnitude weighting, without direction). Cross-correlation is ap-
plied using a mean subtracted template image. For the gradient vec-
tor matching, the gradient components are estimated by an 11 × 11
DoG operator for both the image and the mask. The accumulator
space is constructed by using the vector matching method of Equa-
tion (3), the procedure is illustrated in Fig. 1. For both methods
of correlation and gradient vector matching, the absolute values of
the accumulator spaces are used during the comparison. Finally, the
magnitude correlation is performed after estimating the magnitudes
of the gradient vectors using the same DoG operators as for the gra-
dient vector matching. The comparison is done over the principal
global maximum and the next highest (false) local maximum in the
accumulator spaces. The ratios of measurements of the false maxima
to the true maxima without normalisation are illustrated in Fig. 3(a)
and Fig. 3(b) and for simplicity1. The error bars show the minimum

1Note that a ratio is favoured because the resulting numbers are easy to
interpret. From a probabilistic perspective, a subtraction is, strictly speaking,
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(a) (b)

(c) (d)

Fig. 3. (a) Inverse Ratio of true maxima to next highest false maxima
for 50 runs at each of four different noise levels, using a value of σ
(scale parameter) in the Derivative of Gaussian (DoG) of 1.2 pixels.
(b) Inverse ratio of true maxima to next highest false maxima for
50 runs at each of four different noise levels, using a value of σ of 2
pixels. (c) Inverse Ratio of true maxima to next highest false maxima
with the normalisation for 50 runs at each of four different noise
levels, using a value of σ (scale parameter) in the DoG of 1.2 pixels.
(d) Inverse Ratio of true maxima to next highest false maxima with
the normalisation for 50 runs at each of four different noise levels,
using a value of σ (scale parameter) in the DoG of 2 pixels.

and maximum deviations of the match metric space ratios across the
fifty runs at one noise level. It is observed that although stability in
noise might be slightly higher for correlation, the shape selectivity is
higher for the matching performed on vector fields. Indeed, one sur-
prising result is that gradient magnitude matching is very sensitive
to noise arising from large amplitude gradient values that contain
inconsistent boundary direction information; this suggests strongly
against the use of non-directional Compact Hough Transform based
methods for shape matching. Stability in noise improves with the use
of a larger blurring parameter on the gradient estimators (note nar-
rower error bars on the gradient vector matching curve in Fig. 3(a)
compared to Fig. 3(b)), but this comes at the cost of loss in selectiv-
ity, shown by the curves for Correlation and Gradient vector match-
ing getting closer together in Fig. 3(b). This is improved when the
normalisation term described by Equation (4) and Equation (5) is
included. Fig. 3(c) and Fig. 3(d) show the performance of the nor-
malised algorithm. Inclusion of the normalisation term results in
overall improvement but it becomes more significant as the blurring
increases.

4.2. Key point correspondence experiments

For correspondence, when two different views of the same scene
are given, the problem is to match each location in the first image
with the correct corresponding location in the second one. In com-
puter vision, it is common to estimate the parameters of a geometric

more appropriate, as this space is a logarithmic one.

(a) (b)

(c) (d)

Fig. 4. (a) Putative matches obtained using only cross-correlation as
the similarity metric (567 matches). (b) Inliers of correlation based
matching after running the RANSAC algorithm (512 matches). (c)
The putative matches (282 matches) running the orientation match-
ing algorithm (DoG mask σ = 2). (d) Inliers of orientation based
matching after running the RANSAC algorithm (274 matches).

Table 1. Normalisation Comparison
Divisive normalisation Feature vector normalisation
Put Inl Ratio Put Inl Ratio

South Kensington 304 279 0.9178 612 518 0.8464
Drawer 245 207 0.8449 499 364 0.7295
Desk 172 163 0.9477 229 213 0.9301
St. Pancras 287 263 0.9164 602 498 0.8272

transformation, such as a homography, by automatic detection and
to analyse corresponding features among the input images. The ro-
bustness and speed of this estimation is heavily dependent on the
quality of the initial determination of inlying matches in the differ-
ent images examined. Here, following the methodology described
by Hartley and Zisserman [1], in each image several hundred “inter-
est points” are automatically detected with subpixel accuracy using
Kovesi’s implementation of the Harris feature detector [10, 11]. Pu-
tative correspondence locations are identified by comparing the im-
age neighbourhoods around the features, using a similarity metric.
These correspondences are refined using a Random sample consen-
sus (RANSAC) algorithm [12] that extracts “inliers” whose interim-
age motion is consistent with a homography.

The choice of a metric for initial putative matches which uses not
only the intensity information, but also the orientation information in
the keypoint’s neighbourhood will give a more robust description of
these points. Different similarity metrics (obtained by modifying the
correlation matrix C) used for the experiments in this section are
those of normalised cross-correlation (C = C1), gradient field cor-
relation using two different DoG scales (C = Cg1 or C = Cg2) and
a combination of these gradient fields correlation (C = Cg1 +Cg2).

Fig. 4 illustrates the quality of the match for the cases of corre-
lation and the gradient vector matching. Fig. 4(a) shows the puta-
tive matches for the image pairs when cross-correlation is used as
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Table 2. Correspondence Performance
patch s = 7 patch s = 11

Drawer South Ken. Drawer South Ken.
Correlation 0.5946 0.7128 0.7261 0.7997
Gra.(σ1 = 1.2) 0.7819 0.8724 0.8396 0.9171
Gra.(σ2 = 3) 0.6312 0.7833 0.6500 0.9123
Comb.Gra. 0.7528 0.9086 0.8528 0.9509

patch s = 19 patch s = 23
Drawer South Ken. Drawer South Ken.

Correlation 0.7798 0.9040 0.7644 0.9161
Gra.(σ1 = 1.2) 0.8708 0.9398 0.8511 0.9357
Gra.(σ2 = 3) 0.7918 0.9467 0.8597 0.9530
Comb.Gra. 0.8779 0.9621 0.8883 0.9646

patch s = 35 patch s = 45
Drawer South Ken. Drawer South Ken.

Correlation 0.8283 0.9473 0.8621 0.9547
Gra.(σ1 = 1.2) 0.8842 0.9553 0.8771 0.9548
Gra.(σ2 = 3) 0.8893 0.9638 0.8988 0.9849
Comb.Gra. 0.8879 0.9645 0.8804 0.9725

the similarity metric for a patch size of 19 × 19 pixels around each
feature point and Fig. 4(b) shows the inliers after running Kovesi’s
[11] RANSAC implementation. The same operations are applied
for Fig. 4(c) and Fig. 4(d) with the difference being the use of gra-
dient information in the similarity metric. The gradient fields here
are obtained using a DoG function at scale 2. Table 1 shows the
performance of two different normalisation alternatives in the corre-
spondence algorithm for different input image pairs2. It is evident
from the table that the use of ‘divisive normalisation’ as described
by Equation (5) yields better results than ‘feature vector normalisa-
tion’ which might appear as corresponding to the normalisation in
the original cross-correlation measure given by Equation (1) for the
gradient vector fields case. An evaluation of the effect for different
sizes of DoG operators (scales of 1.2 and 3) and patch sizes (between
7 and 45 pixels) is given for two different images in Table 2. Exper-
iments have been repeated ten times for each case, and the ratio of
the number of inliers to the number of putative matches was used as
a measure of performance in each method. Loosely, it can be seen
from the table that the individual channels obtained from gradient
fields consistently outperform the intensity cross-correlation meth-
ods. The combination of two scales of gradient estimation also gives
rise to improved putative match selectivity at smaller patch sizes.

5. CONCLUSION

A gradient field matching method has been presented as an alter-
native to the typical implementation of intensity correlation based
matching. The method consists of very low-complexity operations
such as accumulation and multiplication, with a simple non-linearity
that achieves pixel-wise normalisation of gradient field components.
Although as the correlation patch size is increased, the relative ad-
vantage of the gradient field approach does reduce, it is clear that
including the outputs of even simple gradient estimators can dramat-
ically improve the correspondence quality at small patch sizes.

The techniques presented here do not address the problems of
rotation and scale invariance, or of determining correspondence in
the case of general affine transformations. Yet, the low complexity
and robustness of the approach presented here still makes it appro-
priate for many problems of object recognition and keypoint corre-
spondence, such as in industrial inspection and some of the less chal-
lenging geometric recovery problems. Furthermore, employing a va-
riety of scaled or rotated templates, a technique used to extend both

2Images at “http://www.bg.ic.ac.uk/research/vision/CorrespImgs.html”

correlation-based template matching and the Compact Hough Trans-
form to handle rotations and scalings of a sought shape, can also be
applied to address the scale and rotation problem in the vector-field
gradient matching scheme.

Further work will involve more extensive evaluations across a
wide range of images, and will consider the extension of the princi-
ple using multiple directional subbands in a wavelet framework, such
as either the steerable complex wavelet scheme of Bharath [13], or
the very efficient modified DTCWT of Kingsbury [14].
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