IMPROVED MOTION CLASSIFICATION TECHNIQUES FOR ADAPTIVE MULTI-PATTERN
FAST BLOCK-MATCHING ALGORITHM

Ivan Gonzdlez-Diaz, Fernando Diaz-de-Maria

Department of Signal Theory and Communications
Universidad Carlos III, Leganés (Madrid), Spain

ABSTRACT

In several video coding standards, such as H.264, motion estimation
becomes the most-time consuming subsystem. Therefore, recently
research on video coding focuses on the development of novel al-
gorithms able to save computations with minimal effects over the
coding distortion. Due to the fact that real video sequences usually
exhibit a wide-range of motion content, from uniform to random,
and to the vast amount of coding applications demanding different
degrees of coding quality, adaptive algorithms have revealed as the
most robust general purpose solutions. In particular, multi-pattern
algorithms can adapt to video contents as well as to required coding
quality by means of the use of a set of heterogeneus search patterns,
each one adapting better to particular motion and quality require-
ments. This paper applies some improvements to the Motion Classi-
fication based Search, an adaptive multi-pattern algorithm based on
motion classification techniques. Our experimental results show that
MCS notably reduces the computational cost with respect to some
well-known algorithms while maintaining the quality.

Index Terms— Block-matching, motion estimation, multi-pattern
algorithms, motion classification, binary linear classifier

1. INTRODUCTION

Motion Estimation (ME) constitutes an essential process in video
coding that consumes a notable portion of the total processing time.
On this classically time-consuming task, the new standard H.264 in-
corporates some novel features, such as variable-size motion com-
pensation or multi-reference coding, that provide great flexibility at
the expense of notably increasing the complexity of the ME. Conse-
quently, fast block-matching algorithms are even more necessary in
order to minimize the number of search points evaluated to find the
optimal solution while maintaining low distorsion values.

Several features, such as zonal searches (centered on predictions ob-
tained from spatial and temporal correlated information) or early
stop conditions, have shown to be very efficient in achieving time
savings in ME. However, current block-matching algorithms still
present some limitations and have difficulties adapting to video con-
tents and motion characteristics.

Real video sequences contain a wide-range of motion contents, dis-
tributed along spatial regions whose shape and position change over
time. Most recent developments in the area of motion estimation
have focused on the adaptation to video contents, in many cases, by
means of the utilization of multi-pattern search algorithms. These
algorithms make use of various search patterns, selecting the most
appropriate to video contents and motion nature. However, multi-
pattern solutions are only reliable if it is possible to find a robust
pattern selection algorithm.

Many of these algorithms select the search pattern based on an intial

1-4244-1437-7/07/$20.00 ©2007 IEEE

II - 485

motion estimation. In [1] two intial search patterns are employed
for this prupose and, later, other algorithms are used depending on
the first results. EPZS algorithm [2] uses a large set of predictions,
specially for the search range dependent prediction set. case, and
also evaluates some initial patterns (increasing the number of search
points). Other approaches employ a pattern selection method that
uses a motion classification measure. In particular, in [3], a dis-
persion measure over the local vector field is used to characterize
motion and select an initial pattern which, afterwards, can switch
to other patterns depending on the block-matching performance. In
[4] the same measure is used to choose the initial pattern but, ad-
ditionally, a MB-level computation allocation system manages the
number search points and uses other patterns when possible. Any-
way, this intial measure may not be robust enough to successfully
classify every case and the algorithm can fall in local minima when
using non-robust patterns at the initial step.

The Motion Classification based Search (MCS) proposed in [5] in-
troduces the utilization of well-known general purpose binary linear
classifiers to provide a hierarchical classification scheme that selects
the most appropriate search pattern. In order to achieve a robust
enough decision, the classification relies on 9 input features, while
the simplicity of the classifiers makes the process computationally
affordable. In this paper we present some improvements of the MCS
algorithm.

The remainder of this paper is organized as follows. A review of
the MCS algorithm is provided in Section 2. The proposed exten-
sions of the MCS are discussed in Section 3. Section 4 contains a
performance comparison between our algorithm and another solu-
tion that has shown to be efficient at any bitrate. Finally, Section 5
summarizes our conclusions and outlines further work.

2. AREVIEW OF THE MOTION
CLASSIFICATION-BASED SEARCH (MCS)

The MCS algorithm [5] chooses among several heterogeneous search
patterns that one which best fits the current motion characteristics.
This novel approach considers the search pattern selection as a multi-
class classification problem and makes use of low computational cost
classifiers to achieve this purpose.

2.1. Local motion vector predictions

Motion vector (MV) predictions are used as potential starting points
of posterior refinements of the local search. The H.264 standard de-
fines a median-based prediction from the MVs of spatially adjacent
blocks. MCS also includes an extended prediction set, with compen-
sated vectors of co-located and four neighbouring blocks, median of
the aforementioned compensated vectors, uplayer vector (that result-
ing from the motion estimation performed for the next larger block

ICIP 2007

size in the same reference) and static vector (0,0). Vector compen-
sation scales vector magnitudes when they have been coded using
different time distances (in visualization order) between the refer-
ence frame and the current frame. This process is explained in detail
in [2].

2.2. Problem parameterization: selected input features

The problem parameterization involves the selection of the input pa-
rameters which adjust better to the classification model. Based on a
previous study about the correlation coefficients (linear relationship)
between potential parameters and desired outputs, we have chosen
nine inputs, namely:

1. Block size: expressed in terms of the number of 4x4 blocks
(1 for 4x4 to 16 for 16x16).

2. Binary input for homogeneous neighbourhood: when the
four spatial neighbouring blocks have the same compensated
MVs this input is set to 1, otherwise is set to 0.

3. Time distance: visualization time distance between a frame
and its reference.

4. Number of neighbouring blocks that been coded as IN-
TRA

5. Absolute cost (Jabs): The cost is measured as a sum of a
distortion term (SAD or Sum of Absolute Differences) and a
term that refers to the differential coding of the MV (compund
of a Lagrangian Term X and a difference in bits between the
prediction and the final MV). The absolute cost of the predic-
tion is linearly adapted to 16x16 block-size and, then, made
independent from the A value by means of:

Jabs = Jprea — 45\ (1)

The value of 45\ has been empirically obtained by observing
the evolution of the costs with respect to A.

6. Cost ratio (Jratio): a ratio between predicted MV costs and
the Average Cost Map that will be described in section 2.3.
The prediction cost is linearly adapted to 16x16 block-size
and, then, the ratio is calculated as:

i
0 _ Ypred
ratio — n,i (2)
Tavg

7. Prediction MV magnitude: large prediction vectors are less

reliable and usually require more exhaustive search patterns.
The magnitude is calculated as:

Mag = |MVprea(@)| + [MVprea(y)

3)

8. Motion Vector Dispersion (MVD): dispersion of temporal
(co-located) and spatial (adjacent) correlated MVs can be use-
ful to characterize the uniformity of the MV field of a block.
Our dispersion measure obeys:

D= 5 S (MVi(@) = MVyreao)|
+|M‘/l(y) - Mvpred(y”) (4)

9. Inverse of A (A\™1): In our experiments, A~* has turned out
to be more suitable to our purposes than A.

Calculate Calculate Full
Median MV Set of MV
predictor predictors
EARLY
SDSP LDSP/ELSP
STOP 2
@ n e n

>
y y y

Fig. 1. Classification scheme of MCS. Early Stop I uses inputs
{1,3,5,6,7,9} while the rest of binary classifiers employ the com-
plete input set

2.3. Average Cost Map

In order to achieve a good level of adaptation to several video fea-
tures such as motion nature or background detail, MCS includes an
Average Cost Map (ACM). The ACM allows us to adapt the dis-
tortion to the region contents (for example: high detailed regions
usually imply high distortion values even when the block-matching
process has reached the optimal solution). The averaging process is
made in two separate domains: space and time. In space, an spatial
average wag is made for each one macroblock-size region ¢ as a
weighted arithmetic mean of the distortions of the macroblock i and
its eight spatial neighbours:

N
i 11—«
Savg = i + — S (5)

j=1

where J; is the accumulated cost of the MB i, N = 8 represents
the eight adjacent blocks, and « is a weighting factor (0 < a < 1)
that establishes the relative importance of a block with respect to its
neighbours. Then, a time average is performed as follows:

Tave = BSivg + (1 — B) g™ (6)

where n is the time instant, 3 is a weighting factor (0 < g < 1)
that establishes the relative importance of new data with respect to
previous samples.

2.4. Classification outputs: search patterns

In the MCS, the outputs of the classification are the search patterns
described below:

1. Early Stop (ES): the algorithm considers a prediction as the
optimal solution and avoid any refinement.

2. Small Diamond Search Pattern (SDSP): a diamond pattern
with a 1 pixel step-size is used until a center point of one
iteration is better than the other points.

3. Large Diamond Search Pattern (LDSP): a diamond pattern
with a 2 pixels step-size is used until a center point of one iter-
ation is better than the other points; afterwards, a refinement
is carried out by means of an SDSP pattern.

4. Exhaustive Logarithmic Search Pattern (ELSP): this pat-
tern is described in [5]. Its use is intended to overcome diffi-
cult situations such as those when predictions are far from the
optimal solution or when the cost curves are not monotonic
towards the optimal solution.

II - 486

2.5. Classification scheme

The MCS bases its functionality on a serial classification scheme
which is illustrated on figure 1. This scheme goes from faster to
slower search patterns and its utilization, rather than the use of paral-
lel structures, allows us to collect misclassified samples correspond-
ing to faster patterns and classify them as the next pattern (thus mini-
mizing the computational increase due to an incorrect classification).
With this approach we can strengthen simple patterns to reduce com-
putational complexity.

Each pattern detector is performed by a binary linear classifier, an
example of low computational cost learning machines that can get
accurate results in an efficient manner. A binary linear classifier
obeys:

j=w'x+b @)

where w represents the vector of weights, x is the input vector with
the parameter values (scaled between 0 and 1), y is the output of the
classifier and b is the bias term. This classifier makes soft decisions
that afterwards must be compared with a threshold (0.5 in our case),
providing a hard decision (0 or 1).

Input values for Early Stop 1 classifier are related to H.264 stan-
dard median predictor. If an early stop is not detected, the full set
of predictors is computed and the best initial vector is chosen, thus
subsequent classifiers use updated information.

The training phase, i.e. the optimization of weights, is based on
the minimization of the Mean Square Error (MSE) and LMS (Least
Mean Squares) is used. However, it has not been possible to apply
this procedure to every parameter. In particular, if we introduce A ~*
on the optimization process, the achieved weight does not lead to a
good solution (refer to [S] for details). To overcome this issue we
have trained classifiers that use all input features except A~' and,
subsequently, got the optimal value of A~! weight by means of a
cross validation process.

3. PROPOSED EXTENSIONS OF THE BASIC MCS

3.1. Use of distortion measures instead of cost measures

The first improvement concerns cost measures, absolute or relative,
used in (1),(2) and (5). We have observed that cost values are prob-
lematic at high QP values due to the term associated to the motion
vector coding. This term becomes very large for small partitions,
since the linear adaptation of the costs entalis multiplying by the
number of trasmitted motion vectors (i.e., the number of partitions).
For example, the use 4x4 blocks implies 16 motion vectors per mac-
roblock. This fact leads to the selection of exahustive patterns when
coding small blocks (nearly independently of the distance between
the prediction and the optimal solution), with the consequent in-
crease of computational complexity. For this reason, we suggest to
use the SAD as a more appropriate measure for this purpose.

To be more precise, we absolute SAD instead of absolute Cost in eq.

(1:
SADqbs = SADpreq — 25X (8)

The value of 25\ has been empirically obtained by observing the
evolution of the SAD with respect to A\. Furthermore, the spatial
average of the new Average Distortion Map (ADM) obeys:

N

i l-«

Sivg = @SADi + — z‘; SAD;)
=

where SAD,; is the accumulated SAD of the MB i, N = 8 repre-
sents the eight adjacent blocks, and « is a weighting factor (0 < o <
1) that establishes the relative importance of a block with respect to
its neighbours. The time average Tgﬁ;; remains as in (6). Finally,
SAD ratio is used in (2) instead of the Cost ratio:

‘ SAD:
SAD: y0 = 2% (10)

n,i
Ta/ug

3.2. A new cost function for the binary linear classifiers

As an extension of the basic MCS, we have designed a novel cost
function to train binary classifiers. This new cost function obeys to
two main objectives:

1. To avoid a suboptimal selection of the weight associated to
A1 (in the previous version, the best weight for A\~ is esti-
mated once the other weights are fixed).

2. To avoid the design of a modified training set in which the
prior probability of the samples is modified in order to put
more emphasis on those samples more sensitive to classifica-
tion errors, i.e., those samples for which an error in the search
pattern selection leads to a high increment of the bit rate.

Therefore, the new cost function allows us to directly obtain the
weight associated to A~" and, besides, incorporates the cost due to
classification errors on the pattern selection process, making more
emphasis on those critical samples without altering their prior prob-
abilities.

Specifically, the proposed cost function obeys:

Cla, B,7) = €[+ a(Ji — Jmin) " A},] (11

where:

e e = y — ¢ is the output error, being y the desired output (0 or
1) and g the obtained output as defined in (7).

e J; is the cost achieved by the search pattern i. Jpmin is the
minimum cost (that obtained by the optimal search pattern).
The cost is measured as a sum of a distortion term (SAD) and
a term that refers to the differential coding of the MV.

e)\ is the Lagrangian parameter that weigths the two terms of
the cost

e «, (3, are the parameters which must be optimized to adapt
the cost function to the coding model. § manages how the
variation of classification errors affects the training, v con-
trols the influence of the coding quality, and « assigns a rel-
ative influence of these two effects over the displacement of
the classification boundary.

Furthermore, our training algorithm only updates the weights when
a classification error is made. Only in those cases, the training algo-
rithm moves the classification boundary in the appropriate direction
(given by the derivative of the error).

Such a parametric function needs a cross-validation process in order
to select those parameters which best fit our model. Thus, each com-
bination of parameters is firstly trained on the training set, which is
made of 40000 samples (block-matching operations) randomly ob-
tained from the coding of typical video sequences for a thorough grid
of QP values. Then, the weights obtained for the combination of «, 5
and -y that achieves the best results on a small validation set of video
sequences are chosen. This validation set is composed of 25 frames
of three heterogeneous sequences (Paris, Football and Coastguard)
at a thorough grid of QP values.

II - 487

Table 1. Performance comparison (PSNR) among FS, EPZS and
MCS

\ PSNR and PSNR variation A (dBs) vs Bitrate (Kbps)

128 | 256 | 512 | 1024 | 1536 | 2048

FS |PSNR|19.61|22.24|25.26|29.23|31.79|33.85

Mobile [EPZS| A [0.03|0.01 [-0.00[-0.01]0.01 | 0.01
MCS| A |[0.00[-0.01]-0.02]-0.04-0.02-0.02

FS |PSNR|26.30|28.32(30.56|33.37|35.27|36.89

Coastguard ([EPZS| A |0.05|0.03 |0.03]0.02]0.05]0.10
MCS| A]0.03-0.01]|0.01]0.01|0.05]0.12

FS |PSNR|33.80|36.54|39.45/42.67|44.53|45.92

Container [EPZS| A [0.07]0.06 | 0.05]0.03 | 0.03 | 0.02
MCS| A [0.070.06|0.04|0.01|0.01]|0.00

FS |PSNR|25.30{27.69|30.36|33.56|35.73|37.53

Tempete |[EPZS| A |0.10 | 0.05|0.02 | 0.01 | 0.02 | 0.03
MCS| A |0.05]0.02-0.04]-0.01]0.00 | 0.02

4. EXPERIMENTAL RESULTS

The proposed algorithm has been embedded in the H.264/AVC Ref-
erence Software Encoder (v10.2). Simulations have been made using
IBBPBBP pattern, non-optimized RD (for real-time coding applica-
tions), search area of 33x33, 5 references and disabled subpel refine-
ment (in order to get results that are independent of other modules
in the coder). The test set involves a coding process over 100 planes
of many video sequences (only results of some of them are included
on this paper). A thorough grid of QP values (from QP 1-51 with
two step size) has been used in order to obtain results at bitrates very
closed to those ones included on the Tables and Figures. The results
at these particular bitrates have been obtained by linear interpolation.
Table 1 and Figure 2 show, respectively, PSNR vs bitrate and com-
putational complexity (in terms of total search points per block and
total coding time) comparison among Full Search (FS), full EPZS
[2] (with extended diamond pattern and fixed, temporal and spatial
memory predictors), and the proposed MCS algorithm. On the one
hand, the FS is included just to provide reference PSNR vs bitrate
results. On the other hand, the EPZS algorithm has shown good per-
formance for a wide-range of motion contents and coding qualities,
while it is computationally much more affordable than FS. However,
itis still computationally expensive since it uses many predictors and
search points with independence of the coding situation.

MCS results in PSNR (see Table 1) are really close to those achieved
by EPZS and FS, with a mean loss of 0.02dBs and a benefit of
0.01dBs, respectively. Furthermore, PSNR losses do not increase
at lower qualities, issue that becomes a classical problem for many
block-matching algorithms. Poor FS results on low bitrates are due
to the cost approximation used in the local search.

On the other hand, MCS algorithm achieves a mean computational
complexity reduction (see Figure 2) of 99.55% versus FS and 48.11%
versus EPZS in mean search points per block. This reduction has an
impact on the total coding time, with decreases of 91.45% versus FS
and 17.04% vs EPZS.

5. CONCLUSIONS AND FURTHER WORK

The wide range of real-time video coding applications demands al-
gorithms able to work at a wide range of qualities. MCS is intended

=1
S

8385883388

(%)

o3

|
BMCS Vs FS
B MCS vs EPZS

Coastguard ~ Container
Video Sequences

Search Points Reduction

Mobile Tempete

(a) Search points reduction of the MCS

80

70

60

OMCSvs FS

40 W MICS vs EPZS
30

10 r

0 T T

T
Coastguard ~ Container
Video Sequences

(b) Total coding time reduction of the MCS

Time Reduction (%)
a

Mobile Tempete

Fig. 2. Computational complexity comparison among FS, EPZS and
MCS in mean search points per block (a) and total encoding time (b)

to work at any coding quality as well as to follow different types
of motion content. Motion classification techniques, which are the
core of the MCS, can become the basis for the development of adap-
tive algorithms that fulfil these requirements. The reported results
show that MCS obtains similar quality values that known robust al-
gorithms while notably reducing the computational complexity.
Further work mainly focuses on the inclusion of other learning ma-
chines for the binary classifiers as well as the design of the classifi-
cation scheme using other structures, such as multi-class schemes.

6. REFERENCES

[1] C.-S. Yu and S.-C. Tai, “Adaptive double-layered initial search
pattern for fast motion estimation,” Multimedia, IEEE Transac-
tions on, vol. 8, no. 6, pp. 1109-1116, 2006.

A. M. Tourapis, “Fast ME in the JM reference software,” Joint
Video Team (JVT) of ISO/IEC MPEG ITU-T VCEG (ISO/IEC
JTC1/SC29/WGT11 and ITU-T SG16 Q.6) 16th Meeting: 24-29
July 2005, Poznan. JVT-P026.

I. Ahmad, Weiguo Zheng, Jiancong Luo, and Ming Liou, “A
fast adaptive motion estimation algorithm,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 16, no. 3, pp.
420438, 2006.

Ching-Yeh Chen, Yu-Wen Huang, Chia-Lin Lee, and Liang-Gee
Chen, “One-pass computation-aware motion estimation with
adaptive search strategy,” Multimedia, IEEE Transactions on,
vol. 8, no. 4, pp. 698-706, 2006.

Ivan Gonzalez Diaz, Manuel de Frutos Lopez, Sergio
Sanz Rodriguez, and Fernando Diaz de Maria, “Adaptive multi-
pattern fast block-matching algorithm based on motion classifi-
cation techniques,” in /EEE International Conference on Acous-
tics, Speech, and Signal Processing, 2007. (ICASSP’07).,2007.

(2]

(3]

II- 488

