
SPATIO-TEMPORAL REGISTRATION TECHNIQUES FOR RELIGHTABLE 3D VIDEO

Naveed Ahmed1, Christian Theobalt1, Marcus Magnor2, Hans-Peter Seidel1∗

1MPI Informatik, Saarbruecken, Germany 2Braunschweig Technical University, Germany

ABSTRACT

By jointly applying a model-based marker-less motion cap-

ture approach and multi-view texture generation 3D Videos

of human actors can be reconstructed from multi-view video

streams. If the input data were recorded under calibrated

lighting, the texture information can also be used to measure

time-varying surface reflectance. This way, 3D videos can be

realistically displayed under novel lighting conditions. Re-

flectance estimation is only feasible if the multi-view texture-

to-surface registration is consistent over time. In this paper,

we propose two image-based warping methods that compen-

sate registration errors due to inaccurate model geometry and

shifting of apparel over the body.

Index Terms— 3D video, spatio-temporal registration,

image processing, machine vision, computer graphics

1. INTRODUCTION

The commitment to an adaptable a priori body model en-

ables us to jointly use a marker-less motion capture approach

and a multi-view texture generation method to reconstruct

free-viewpoint videos of human actors from only a handful

of multi-view video streams [1]. If the input video footage

is recorded under calibrated lighting conditions we can ex-

ploit the fact that the person moves relatively to the cameras

and light sources in order to reconstruct a dynamic surface

reflectance description for the model [2]. This description

consists of a parametric BRDF for each surface texel and a

normal with time-varying direction. The joint description of

time-varying scene geometry and appearance enables us to re-

alistically display 3D videos also under novel lighting condi-

tions. For reflectance estimation, it is essential that the multi-

view texture-to-surface registration is consistent over time. In

this paper, we present two methods based on image warping

to correct for the two most important sources of texture regis-

tration errors.

The first source of error are inaccuracies in the body

model’s geometry that can be compensated by warping the

input video frames prior to texture generation. In contrast

to our image-based approach, related methods from the lit-

erature typically deform the geometry of the model to opti-
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mize model-to-image registration. For instance, [3, 4] de-

form model geometry from input images by jointly optimiz-

ing multi-view silhouette- and photo-consistency. In a simi-

lar line of thinking, [5] jointly employs silhouette and stereo

constraints to deform scene geometry from images. The main

advantage of our image warping method is that it is part of

the preprocessing and thus time-varying geometry variations

don’t need to be encoded in the 3D video streams.

The second source of misregistrations is the shifting of

apparel while the person is moving. This also has to be com-

pensated prior to reflectance estimation. We detect the motion

of the apparel by computing optical flow fields in the texture

space. Subsequently, the texture coordinates for lookup are

warped according to the textile motion. To our knowledge,

this is the first method in the literature to attack this shifting

problem.

Our results show that it is feasible to use purely image-

based approaches to compensate the most prominent multi-

view registration errors. Consequently, they can be handled

in a preprocessing stage which enables us to stick to a very

compact relightable 3D video data format.

The paper continues in Sect. 2 with a brief review of the

basics of relightable 3D video reconstruction and important

preprocessing steps. Sect. 3 explains the flow-based image

warping technique which is used during both the geometry er-

ror compensation, Sect. 4, as well as the cloth shift detection,

Sect. 5. Results are shown in Sect. 6 and the paper concludes

with an outlook to future work in Sect. 7.

2. PRELIMINARIES

Our recording setup comprises of eight megapixel video cam-

eras that are placed in an approximately circular arrangement

around the moving subject, as well as two calibrated light

sources. During relightable free-viewpoint video acquisition

we record two types of multi-view video sequences for each

person and each type of apparel [2]. One so-called reflectance

estimation sequence (RES) is captured in which the person

rotates on the spot while attaining an approximately static

posture (achievable by rotating in very small steps). This

sequence is used for per-texel BRDF estimation. Also, sev-

eral dynamic scene sequences (DSS) are recorded to capture

arbitrary human motion. From these sequences, the actual

relightable free-viewpoint videos are reconstructed, and the
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second component of the reflectance model, the time-varying

normal field, is estimated. We apply the marker-less opti-

cal motion estimation and shape matching scheme described

in [1] to make a kinematic body model with a single-skin sur-

face follow the motion of the actor in each of the input video

streams.

Given the moving geometry, all input video frames and all

corresponding data required for reflectance estimation (e.g.

image samples, normals, visibility information, light vectors)

are transformed into sequences of textures. To this end, we

parameterize the model’s surface over a 2D square. For the

BRDF and time-varying normal estimation we need a pa-

rameterization with minimal surface distortion. To achieve

this, we employ a parameterization (Parameterization A) that

leaves the mesh boundary free and results in fairly uniform

distribution of samples [6]. For the purpose of cloth shift de-

tection, on the other hand, we prefer a parameterization (Pa-

rameterization B) with a fixed square boundary, Fig. 1.

Fig. 1. Human body model and the corresponding texture

parameterizations (colors=normals encoded in RGB).

3. IMAGE WARPING

A generic GPU-assisted image-warping method is used in ei-

ther of the two subsequently described multi-view registration

approaches. The method deforms an input image, IM , in such

a way that it optimally overlaps with a reference image IR.

The warping operation works as follows:

A regular 2D triangle mesh T with n vertices {v1, . . . , vn}
is superimposed over IM . The optical flow between IR and

IM is computed by means of an appropriate optical flow

method, for instance the hierarchical Lucas-Kanade [7] tech-

nique. The so-created flow field describes a displacement for

each pixel in IM that brings it into optimal overlap with its

corresponding pixel in IR, Fig. 2. From the per-pixel dis-

placements we compute a globally consistent warping for IM

that brings it into photo-consistent registration with respect

to IR. In order to do this for each vertex vi in T a 2D dis-

placement vector �ri is estimated by performing a weighted

average on all flow vectors in a rectangular pixel neighbor-

hood around the position of vi. The triangle mesh is then de-

formed to globally adapt to the per-vertex displacements by

means of a Laplace interpolation. The new mesh configura-

tion approximately satisfies the displacement constraints and

Fig. 2. Illustration of the image-warping procedure.

also preserves a smooth geometry. Formally, the deformation

of the mesh is found by solving the Laplace equation

Lx = 0 (1)

where x ∈ R
n are the vertex positions and the n × n-Matrix

L is the discrete Laplace operator [8] with

Lij =

⎧
⎪⎨

⎪⎩

4 if i inner vertex and i = j,

−1 if i inner vertex and j in its 4-neighborhood,

0 else.

(2)

To solve the system, we add suitable boundary conditions to

Eq. (1) and reformulate the problem as

min

((
L

K

)

x =

(
0

d

))2

(3)

The n×n matrix K and d ∈ R
n impose the interpolation con-

ditions which will be satisfied in least-squares sense. K is a

diagonal matrix which contains non-zero weights wi for ver-

tices vi for which a displacement constraint has been found,

as well as for vertices on the image boundary. The vector d

encodes position constraints of the form xi = wi · (ui + �ri)
for inner vertices with displacement �ri, and constraints of the

form xi = ui ·xi for vertices on the image boundary (ui being

undeformed vertex coordinates). It contains 0-entries for all

other vertices. We solve Eq. (3) for each coordinate direction

individually.

4. GEOMETRY ERROR COMPENSATION

Since the geometry of our body model does not exactly match

the geometry of its real-world counterpart, during texture gen-

eration color information from spatially distinct surface lo-

cations may be mapped onto the same surface point of the

model. We prevent these errors by modifying the texture gen-

eration process in the following way:

Suppose we want to transform the image IC(t) seen by

camera C at time step t into the texture domain, and thereby
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Fig. 3. Geometry error compensation.

produce a texture henceforth referred to as multi-view video

(MVV) texture. For each texel Ki in the MVV texture, we

first determine the camera that sees it best. We achieve this

by searching for the camera that exhibits the minimal angu-

lar deviation between its viewing vector and the normal of

the surface point that maps to Ki. In case the camera that

sees the point best is camera C itself the texel color is taken

from IC(t). In contrast, if it is another camera D �= C, the

body model is projectively textured with Ic(t) and the so-

textured model is rendered from camera view D to obtain

IC in D, Fig. 3. Using the image warping method (Sect. 3),

IC in D is deformed such that it is optimally overlaps with

ID(t). The resulting warped reprojected image is called

IC,warped. Sometimes better results are obtained by recur-

sively applying the warping procedure. Typically, after three

iterations a convergence is achieved. The texel color is now

taken from IC,warped(t). All possible combinations of ref-

erence and reprojected warped images for each time step are

precomputed which means 56 warping computations per time

step in our eight camera setup.

The comparison shown in Figs. 5a,b proofs that ghosting

artifacts in textures that are due to geometry errors can be

prevented by our approach without resorting to error-prone

geometry deformation. One might argue that optical flow is

based on the assumption that all surfaces in the scene are

diffuse. For reflectance estimation, though, we deliberately

generate specular highlights in the images. Our experiments

show that the method nonetheless produces good results since

in most input frames the diffuse reflectance is predominant.

5. CLOTH SHIFT DETECTION AND
COMPENSATION

Our BRDF estimation procedure assumes that a static set of

material parameters can be assigned to each point on the model’s

surface. In reality, however, this assumption does not hold

since the apparel of the person shifts across the body while

she is moving. Prior to surface reflectance, we thus estimate

the motion of the apparel over time and register all surface

textures against a reference texture. Please note that we can

still reproduce the true shifting of the apparel during render-

ing by making the cloth motion information accessible to the

Fig. 4. Cloth shift between two subsequent combined textures

t and t+1 (in parameterization B) is found via optical flow. In

the middle, detected shifted areas are shown in red. Finally,

the shift is encoded in the warped texture-coordinates.

renderer. During display, the renderer warps the estimated

static BRDF textures back into their true position. We em-

ploy the following method to detect the shifting of cloth in

the texture domain, Fig. 4:

Our reference time step is the last frame of the RES. MVV

textures for this frame and all the frames of the DSS are re-

sampled into a weightedly blended single texture in parame-

terization B. Cloth shift is detected by computing an optical

flow field between subsequent blended textures. This flow

field describes for each texel how it shifts across the body

surface. This texel motion information is made accessible to

the reflectance estimation process as well as the renderer in

the form of warped texture coordinates.

Please remember that we use texture parameterization A

for sampling, but texture parameterization B for cloth shift

computation. Therefore, we project the parameterization A

texture coordinates of the reference frame into parameteriza-

tion B to obtain the texture coordinate image ICoordAB(0).
Given the accumulated displacements from the pairwise flow

fields we can deform ICoordAB(0) such that it matches the

texture at each time of input video using the method from

Sect. 3. Note that it is essential to compute the cloth motion

relative to the previous frame and accumulate the displace-

ment over time. Only this way, appearance differences due to

lighting changes can be robustly handled.

The sequence of deformed texture coordinates enables us

to account for cloth shifting during estimation and rendering,

although we only estimate a static set of BRDF parameters.

6. RESULTS

Fig. 6a,b shows example screen-shots of a high-quality re-

lit 3D video rendered in real-time. We assess the multi-view

warping quality by comparing the image differences between

reference views and reprojected model views before and after

the warp. The local registration improvements in single image

pairs lead to a global improvement in multi-view texture-to-

model consistency. In Fig. 5a,b the texture registration im-

provement due to warping-based geometry correction are vis-

ible. With respect to one input stream not used for reconstruc-
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Fig. 5. With geometry error compensation ghosting artifacts

(a) are significantly reduced (b).

tion we have obtained a peak-signal-to-noise-ration improve-

ment of 0.2 dB. On a Pentium IV 3.0 GHz, warp correction

takes around 10 seconds for one pair of reference image and

reprojected image.

Cloth shift compensation yields a further PSNR improve-

ment of 0.1-0.2 dB. Although these quantitative improvements

may appear small, their influence on the overall visual is qual-

ity is well-pronounced. Fig. 6 shows how it corrects the move-

ment of seams of the shirt over the surface. Cloth shift detec-

tion takes around 35 s per time step.

Both methods lead to enhanced registration in majority of

the situations. Still, being global optimization methods, they

can possibly lead to local deterioration. During cloth shift

detection the evolution of wrinkles can also cause a problem.

In some rare cases, seams at visibility boundaries may occur,

however this was never a noticeable problem in our many test

scenes. Both methods are optional extensions to the original

relightable free-viewpoint video estimation framework, and it

is up to the user to decide if they are activated.

Despite the limitations, our results show that image-based

warp correction and cloth shift detection are effective registra-

tion techniques that enhance spatio-temporal photo-consistency

for relightable 3D videos.

7. CONCLUSIONS

We presented two image-based spatio-temporal registration

techniques that enable high-quality reconstruction of model-

based relightable 3D videos. In conjunction, they enable the

faithful reproduction of an actor’s appearance despite small

inaccuracies in the template model’s shape, and despite move-

ment of textiles across the body’s surface. Quality improve-

ments in the real-time renderings were shown both quantita-

tively and visually. In the future, we plan to work on new

algorithms to reconstruct moving people wearing very wide

apparel.
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