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ABSTRACT

Apparent motion estimated on satellite data is used for ex-

ample to compute the wind field in meteorology, and surface

currents in oceanography. The satellite images display tur-

bulent fluids with strong rotational patterns at different spa-

tial and temporal scales. This specificity necessitates devis-

ing adapted methods, allowing to control the divergence and

curl of the retrieved motion field. Vector spline methods are

very adapted to that purpose. The vector spline problem is

defined as finding a motion field that satisfies a temporal con-

servation equation at selected control points and that mini-

mizes a regularity constraint in all the image domain. An

exact solution of this problem can be found for the 2nd or-

der div-curl regularity constraint. The retrieval of the solution

does not require an iterative minimization procedure: a dense

matrix must be inverted to compute the spline’s coefficients.

This matrix unfortunately becomes large and ill-conditioned

as the number of control points increases, making the vector

spline approach unsuitable for processing large satellite im-

ages. This paper presents a method called “Partition of Unity

and Optical Flow” (PUOF), based on a decomposition of the

spatial domain: local vector splines are computed in subdo-

mains of the image, then merged using a partition of unity al-

gorithm. The resulting motion field is a good approximation

of the exact vector spline solution, and its retrieval is numer-

ically stable and computationally affordable even when pro-

cessing large data sets, as demonstrated by results obtained

on sequences of synthetic and meteorological images.

Index Terms— Non-rigid motion, Fluid flow, Second or-

der div-curl regularity constraint, Vector spline, Partition of

unity, Radial basis function.

1. INTRODUCTION

Estimating the apparent motion field from satellite data has

crucial applications in meteorology for estimating wind and

clouds motion, and in oceanography for assessing surface cur-

rent. For these applications, satellite images display fluid tur-

bulent motion. The challenge is to devise a motion estima-

tion method adapted to the strong rotational patterns of the

motion field, and computationally affordable for processing

sequences of very large satellite images.

The classical approaches of apparent motion estimation

attempt to solve a temporal conservation equation in all the

image domain. This equation provides information on only

one component of the 2D motion field: e.g. the usual lumi-

nance conservation equation provides the projection of mo-

tion onto the image gradient. This aperture problem is solved

by adding a regularity constraint, most often based on the L2

norm [1]. This general framework have been adapted to the

specificities of fluid motion. In [2, 3] the continuity equation

is used for a better modelling of compressible flows; in [4]

the 1st order div-curl regularity is applied to assess the mo-

tion of non deformable objects; in [5] the spatial scales re-

lated to turbulence are handled in a multiscale framework and

the 2nd order div-curl regularization is used for controlling

the divergence and vorticity of the motion field. An alter-

native tracking methodology for fluid structures (vortices) is

proposed in [6]: a model describing the geometry and inten-

sity of vortices is fitted to the data; the tracking is based on

analysing the evolution of the model’s parameters.

Most of these methods rely on calculus of variations: an

energy functional is defined, including a data confidence (the

residual of the conservation equation) and a regularity term

(the norm of the motion field). The functional is non con-

vex and multi-scale strategies must be implemented for avoid-

ing local minima. Furthermore, if the regularity constraint is

based on the 2nd order div-curl norm, minimization involves

complex numerical schemes for solving 4th order PDEs, lead-

ing to numerical unstability and long computational time.

Vector spline methods constitute efficient alternatives to

the classical approaches. They are issued from the data inter-

polation or approximation domain: a vector field is searched,

that minimizes a regularity constraint over the spatial domain,

and that interpolates or approximates vector observations at

control points. An exact solution of both interpolation and ap-

proximation problems can be found if the regularity constraint

is based on the 2nd order div-curl norm. This solution is a lin-

ear combination of thin-plate radial basis functions, weighted

by coefficients obtained by solving a linear system. Vector

splines for motion applications have been introduced in [7]

to reconstruct the wind field from scattered balloon measure-
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ments. In [8] an adaptation of this formalism has been pro-

posed for apparent motion estimation: the control points are

defined according to local criteria, such as locations with suf-

ficient contrast. The observations at control points are issued

from the luminance conservation equation, and consist of the

projection of the motion onto the spatial gradient. This work

has been adapted in [9] to the use of the continuity instead of

luminance conservation equation, better adapted to compress-

ible fluids.

In practice, the retrieval of a vector spline requires invert-

ing a dense linear system that becomes unstable and compu-

tationally prohibitive if the number of control points is large.

To overcome this problem, quasi-interpolation methods [10]

have been introduced. These methods approximate the exact

solution of the interpolation or approximation problems by

using bell-shaped instead of thin-plate basis functions. The

inversion is thus fast and stable, but it is difficult to apply

such techniques for motion estimation: they are hard to adapt

to the quasi-interpolation of projected data (observations pro-

vided by the conservation equation), and they cannot handle

an uneven spatial repartition of control points, thus preventing

the definition of control points from local image criteria.

We propose a new method, Partition of Unity for Opti-

cal Flow (PUOF), that presents the same advantages as vec-

tor spline methods, but numerically stable and computation-

ally affordable for large images. As for quasi-interpolation,

the PUOF method provides an approximation of the exact so-

lution of the interpolation/approximation problems. The ap-

proach is based on a spatial domain decomposition: local vec-

tor spline problems are solved in subdomains, then merged by

a partition of unity algorithm.

This paper is structured as follows: in section 2 a short

introduction to vector spline methods for fluid motion estima-

tion is given. Readers should refer to [8, 9] for implemen-

tation details. The proposed PUOF method is then defined:

section 3 details the decomposition of the spatial domain by

an adaptative quadtree; section 4 explains how the local vec-

tor splines are merged to yield a unique motion field over the

whole domain. Results are presented in section 5 for oceano-

graphic and meteorological applications. Finally, conclusions

and perspectives are given in section 6.

2. VECTOR SPLINE METHODS FOR FLUID
MOTION ESTIMATION

Apparent motion estimation in the vector spline formalism re-

quires (1) selecting control points in the image domain Ω, and

(2) defining a conservation equation, to be exactly or approx-

imately satisfied at control points. The conservation equation

allows to compute indirect observations of the motion field

at the control points, that are interpolated (or approximated)

using basis functions minimizing the 2nd order div-curl regu-

larity.

The control points must be selected in regions where a

sufficient contrast (in space and time) is available for motion

perception, discarding uniform or static areas of the image.

Local image criteria are thus used to select control points, as

for instance a double thresholding applied to the magnitude

of the spatial gradient and to a motion index, defined as the

ratio of the temporal derivative and the spatial gradient.

A conservation equation is chosen and assumed valid at

the resulting n control points Pi: in the case of incompress-

ible fluids, the usual luminance conservation, and in the case

of compressible fluids, the continuity equation. The vector

spline formalism enables interpolating observations provided

that they can be expressed as a linear operator Li applied to

the motion field at the ith control point: Liw = ∇I · w for

the luminance conservation, and Liw = ∇I · w + I div(w)
for the continuity equation. The conservation equation is then

Liw = −It. The vector spline problem consists of finding w
minimizing:

n∑

i=1

(Liw + It)2 + λ

∫

Ω

α‖∇divw‖2 + β‖∇curlw‖2 (1)

The λ parameters tunes the confidence on data: the limit

case λ → 0 corresponds to the interpolation problem. Un-

der specific conditions on the control points (e.g. they must

be non aligned) the problem (1) admits a solution, uniquely

defined for each combination of control points, conservation

equation, α, β and λ parameters. This solution is further re-

ferred as the ’exact spline’, and is a linear combination of

radial basis functions, centered at the control points. The ba-

sis functions are built upon derivatives of r4 log r (r being the

distance to the associated control points) and tend towards in-

finity with r.

The coefficients of the linear combination are obtained by

inverting a dense matrix which size depends on the number

of control points. If the latter increases, the required com-

putational cost becomes prohibitive, the system becomes ill-

conditioned and its inversion unstable. Practically, it becomes

nearly impossible to solve the system with more than 5,000

control points. This limitation motivates the proposed PUOF

method, presented below.

3. SPATIAL DOMAIN DECOMPOSITION

The goal is to subdivide the spatial image domain into rect-

angular cells, using a quadtree strategy driven by the location

of control points: cells must be small in regions with impor-

tant concentration of control points, and reversely large in ar-

eas with fewer control points. The algorithm is adapted from

the works of [11], devoted to the rendering of very large 3D

meshes.

Let’s assume that at a given stage of the algorithm, the

image is subdivided into rectangular cells. To each cell Cj

corresponds a set of Nj control points P j
i , lying within a ball

II - 506



Bj centered on the cell and containing it. Neighboring balls

overlap each other, avoiding aliasing effects caused by a sub-

division into adjacent rectangles.

The subdivision strategy is defined such as each ball con-

tains a number of control points between a low and a high

threshold, to enable the computation of the spline, and to en-

sure the numerical stability. The initial cell is the whole do-

main. A cell is subdivided into four new cells of equal size

if its number of control points is above the high threshold.

This subdvision stage is iterated until convergence. For the

resulting cells containing not enough control points, the ra-

dius of the surrounding ball is increased until this criterion is

satisfied.

4. PARTITION OF UNITY

After performing the quadtree subdivision, the image domain

is split into M cells, each cell Cj corresponding to a set of

control points P j
i . The motion is computed in each cell as the

vector spline minimizing equation (1), providing a set of M
vector fields wj .

Although defined over the whole spatial domain, each vec-

tor field wj is only valid within its associated cell Cj . These

local fields must therefore be combined to define a global mo-

tion estimate on the whole image domain.

For that purpose we adopt a partition of unity approach:

we define for each cell Cj an influence function φj as φj(x) =
φ(||x− xj ||/rj), xj being the center of cell Cj , rj the radius

of ball Bj , and φ a smooth bell-shaped radial basis function

with compact support. In this paper φ is defined as in [12] by:

φ(r) = (1 − r)6+(35r2 + 18r + 3) (2)

with (1− r)6+ equals to 0 if r > 1. After normalisation of the

influence functions, the resulting motion field is computed as:

w(x) =
M∑

j=1

Ψj(x)wj(x) =
M∑

j=1

φj(x)
∑M

k=1 φk(x)
wj(x)

5. RESULTS

We present results obtained on a synthetic sequence, obtained

by numerical integration of the OPA ocean circulation model,

and simulating satellite acquisitions of Sea Surface Tempera-

ture. This sequence provides a reference: the surface current

is a state variable of the model, to which the estimated mo-

tion fields are compared. A frame of the OPA sequence and

the corresponding reference motion field are presented in the

upper part of figure 1.

Apparent motion is estimated with PUOF and the exact

spline under the same conditions: same set of 955 control

points, luminance conservation equation, α = 0.9, β = 0.1,

λ = 0 in eq (1). The resulting motion fields are displayed in

the bottom part of figure 1. There is no perceptible difference

between the two estimated motion fields: the angular differ-

ence between both fields is 0.037 degrees, the relative error on

the magnitude of motion less than 2%. PUOF thus provides a

good approximation of the exact spline.

The numerical stability and computation time are then

compared. PUOF requires a computational time proportional

to the number of control points, and its numerical stability is

constant. For the exact spline, if the number of control points

is increased from 1,000 to 5,000, the computation time is

multiplied by 1,000 and the numerical stability is severely af-

fected (conditionning of the system multiplied by 100). These

results prove that the PUOF method fulfills its objectives: it

has the quality of estimation of the exact spline and is numer-

ically stable and affordable for large sets of control points.

Fig. 1. Top: frame of the OPA sequence and reference motion

field. Bottom: exact spline and PUOF.

The following motion estimation methods have been ap-

plied to the OPA sequence: (1) the exact spline, (2) PUOF,

(3) Corpetti and Mémin’s method [5], a variational and multi-

scale implementation using the 2nd order div-curl constraint,

and (4) the classical optical flow [1] with L2 regularity. The

mean errors with the reference are computed and displayed in

table 1: angular error Ea and relative error En on the magni-

tude of motion. The smallest angular errors are obtained with

PUOF and the exact vector spline. Qualitative assessments

furthermore indicate that the spline-based models are more

powerful to detect vortices.

Finally, figure 2 displays results of PUOF applied to a real

satellite sequence. The motion is computed on an extract of

Meteosat-7 waver vapour acquisitions, displaying a large vor-
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Method Ea (degrees) En (%)

Exact spline 42.401 0.871

PUOF 40.948 0.694
Corpetti & Mémin 47.414 0.587

Horn & Schunck 50.116 0.729

Table 1. Angular and norm errors between models and OPA

reference field.

tex. 3 results are shown, corresponding to an increasing num-

ber of control points: up to 10,000, which is far beyond the

number of control points a standard vector spline can prac-

tically manage. With the smallest amount of control points,

only the motion of the vortex and a global translation are re-

trieved. As the number of control points increases, the re-

sulting field presents a greater level of details. This suggests

a link between the density of control points and the spatial

scale of analysis.

Fig. 2. Top-Left: extract of a METEOSAT-7 WV sequence

(c) Eumetsat. Top-right, bottom-left and bottom-right: PUOF

with 1871, 3742 and 9354 control points.

6. CONCLUSION

The proposed PUOF method has the same the advantages as

vector spline methods for fluid motion estimation: control on

the divergence and curl of the retrieved motion field, solution

obtained without iterative minimization. PUOF is further-

more computationally affordable and numerically stable even

when the number of control points gets large. This makes

PUOF a suitable method for motion estimation on sequences

of satellite images displaying turbulent fluids. Current work

seeks to formulate this approach in a multiscale framework.

The authors wish to thank Marina Levy (LOCEAN/IPSL,
France) for providing the OPA sequence.
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