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ABSTRACT

The current paper presents a novel adaptive multiscale scheme

to estimate optical flow from image sequences. The scheme

models estimation uncertainties which are used to reduce the

influence of unreliable intermediate estimates on accuracy.

The experimental results show that the proposed method pro-

vides more accurate estimates for both small and large mo-

tions than a standard multiscale scheme in which an incre-

ment is added to an intermediate estimate regardless of esti-

mation certainty.

Index Terms— Optical flow, multiscale, pyramid, least

squares. uncertainty

1. INTRODUCTION

The current paper presents a novel adaptive multiscale scheme

to recover optical flows from image sequences. In a stan-

dard multiscale scheme, for example [1], a warped image at a

finer pyramid level is produced using estimates from a coarser

pyramid level. By using the warped image and video image at

the same level, a velocity increment is estimated which is used

as a correction to the velocity estimate from a coarser level.

In the standard scheme, an increment could be affected by

noise at the finer scale and once the increment is erroneously

estimated, the scheme is not able to recover from the error

[2]. Regarding this problem, Simoncelli modeled cross-scale

refinement as a stochastic process and applied the Kalman fil-

tering technique to ensure the optimality of intermediate esti-

mates.

A second problem which is less frequently addressed is

the influence of the number of pyramid levels on estimation

accuracy, especially for small displacements. In real applica-

tion, the largest number of pyramid levels should generally

be used (within the limit of image size) to cover all possi-

ble displacements. However, because of the down-sampling

procedure in constructing a Gaussian pyramid [3], a small ve-

locity from the original images could be down-scaled to a tiny

velocity at the coarsest scale. In this case, image noise may
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introduce large error to the coarsest estimate and the error re-

mains in the refinements at finer scales. As we show below,

the standard scheme is not able to produce accurate estimate

in this case.

The proposed adaptive scheme solves the above problems

through improving the accuracy of intermediate estimates at

all levels. The scheme assumes a stochastic process for the

cross-scale velocity refinement, in which estimation uncer-

tainties are modeled as variances of intermediate estimates

obtained from a least squares estimation scheme. By adap-

tively reducing the variances, superior accuracy can be guar-

anteed. Our experiments show that the proposed technique

produces more accurate estimates than the standard scheme

for both small and large displacements. Moreover, the pro-

posed scheme ensures that the use of a large number of pyra-

mid levels does not introduce serious errors to small displace-

ments and the scheme is suitable for a procedure in which

both cross-scale and same-scale refinements are adopted.

2. ADAPTIVE MULTISCALE ESTIMATION

2.1. Optical Flow Estimation

If a pixel moves from (x, y, t) to (x + u, y + v, t + 1), we

assume:

I(x + u, y + v, t + 1) + c = I(x, y, t), (1)

∇I(x + u, y + v, t + 1) = ∇I(x, y, t), (2)

where I denotes image intensity, u and v are velocities in x
and y directions, respectively. ∇ is a partial differentiation

operator, c is a parameter compensating temporal variation

of intensities. Eq.(1) models the constraint on image intensi-

ties, in which intensity variation c is allowed [4] while Eq.(2)

models the constraint on spatial derivatives which are also as-

sumed to be conserved over time. Applying Taylor expansion

to the above models, we can get a linear expression of the

unknown parameters w = [u, v, c]T :

Aw =

⎡
⎣

Ix Iy 1
Ixx Ixy 0
Ixy Iyy 0

⎤
⎦ w ≈ −

⎡
⎣

It

Ixt

Iyt

⎤
⎦ = −b, (3)
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where Ia = ∂I
∂a and Iab = ∂

∂b (
∂I
∂a ) are the first order and the

second order derivatives, respectively. By further assuming

that velocities and intensity variations remain constant for all

pixels in a spatial region Ω containing N pixels, w can be

estimated through a least squares (LS) scheme [5]:

ŵ = −Ā−1b̄, (4)

where Ā =
∑

Ω AT A and b̄ =
∑

Ω AT b. According to the

properties of a LS estimator [6], ŵ is an unbiased estimate of

the true vector w̃. Furthermore, a variance is associated with

ŵ and its unbiased estimate is given as [6]:

D =
∑

Ω(−b− Aŵ)T (−b− Aŵ)
3N − p

(Ā)−1, (5)

where 3N is the total number of samples used in the LS re-

gression and p = 3 is the number of unknown parameters.

In a standard multiscale scheme, the above LS regression

is used to produce the initial estimate at the coarsest level and

estimates of increments at all finer levels. For a pyramid con-

taining H levels, where the 1st level is the finest level and the

Hth level is the coarsest level, if we use ŵ1 and ŵ2 to denote

the estimates before and after adding an increment, the refine-

ment procedure from a coarser level h + 1 to a finer level h
consists of two steps. The estimate is firstly up-scaled because

of the down-sampling applied when constructing pyramids:

ŵh
1 = Gŵh+1

2 , (6)

where G ∈ R3×3 is a diagonal matrix in which G11 = G22 =
2 are the up-scaling factors in x and y directions respectively

and G33 = 1 indicates that the intensity variation c is assumed

to be the same for all levels. At level h, the LS scheme is also

used to produce an estimate of an increment ẑh
. The final

estimate at the level h is then computed as:

ŵh
2 = ŵh

1 + ẑh = Gŵh+1
2 + ẑh. (7)

Moreover, if the refinement is performed within the same level,

the procedure can be modeled as:

ŵh
2 = ŵh

2 + ẑh. (8)

2.2. The Model of Estimation Uncertainty

We measure estimation uncertainty through computing the

variance of an estimate. To this end, we firstly model the true

values of wh at any level h as w̃h. The cross-scale relationship

between w̃h and w̃h+1 can then be expressed as:

w̃h = Gw̃h+1, (9)

where G is defined in Eq.(6).

Here we consider the estimate with an increment (ŵh
2 ) and

the one without an increment (ŵh
1 ) as random variables with

the same expectation:

E(ŵh
2 ) = E(ŵh

1 ) = w̃h, (10)

where E(∗) denotes the expectation. Correspondingly, an in-

crement ẑh
is assumed to be a random variable which is inde-

pendent from ŵh
1 and has an expectation of 0. The assumption

for ŵh
2 is valid because the LS estimator is adopted through-

out the whole procedure and any refined estimate is expected

to be the same as its true value. Furthermore, because:

E(ŵh
1 ) = E(Gŵh+1

2 ) = GE(ŵh+1
2 ) = Gw̃h+1 = w̃h,

(11)

the assumption for ŵh
1 stands.

For each component in the vector ŵh
, the corresponding

uncertainty is modeled as the variance of the component. Ac-

cording to Eq.(5), at the coarsest level H we can obtain a

variance matrix DH
2 for the initial estimate ŵH

2 . Because the

covariances between components are not considered, we use

the notation DH
2 instead, in which the covariances are set to

zero. Based on Eq.(6), when up-scaled to a finer level H − 1,

the variance matrix is computed as:

DH−1
1 = GDH

2 GT . (12)

As all matrices are diagonal, we use the following expression:

DH−1
1 = GT GDH

2 . (13)

Similarly, because the LS is used to estimate an increment

ẑH−1
, we can also obtain its variance DH−1

z according to

Eq.(5). As ŵH−1
1 and ẑH−1

are assumed to be independent

from each other, the variance of ŵH−1
2 is then computed as:

DH−1
2 = DH−1

1 + D H−1
z = GT GDH

2 + DH−1
z . (14)

More generally, the cross-scale variance updating procedure

corresponding to the velocity updating procedure shown in

Eq.(7) is expressed as:

Dh
2 = Dh

1 + Dh
z = GT GDh+1

2 + Dh
z . (15)

2.3. The Adaptive Scheme: Rule 1

From Eq.(15), it can be seen that variances are accumulated

across scales. In order to increase estimation certainties at the

finest scale, it is necessary to reduce the variance shown in

Eq.(15) at any level h. As ẑh
is a major source of errors, we

reduce the variance through adaptively setting thresholds to

ẑh
. In rule 1, we compute a final estimate ŵh

f at the level h as

a weighted sum of the estimates with and without adding an

increment, i.e. the weighted sum of ŵh
1 and ŵh

2 by using their

variances:

ŵh
f = Dh

2 (Dh
1 + Dh

2 )−1ŵh
1 + Dh

1 (Dh
1 + Dh

2 )−1ŵh
2 . (16)

According to Eq.(7), ŵh
f can be further written as:

ŵh
f = ŵh

1 + Dh
1 (Dh

1 + Dh
2 )−1ẑh

= ŵh
1 + Dh

1 (2Dh
1 + Dh

z )−1ẑh. (17)
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Because ŵh
f is the final intermediate estimate at any level, we

have ŵh
1 = Gŵh+1

f and the cross-scale refinement procedure

can be finally expressed as follows according to Eq.(16):

ŵh
f = Gŵh+1

f + Λ1ẑ h, (18)

where Λ1 = Dh
1 (2Dh

1 +Dh
z )−1. According to the assumptions

shown in Section 2.2, it can be proved that ŵh
f is also an un-

biased estimate of w̃h. The unbiased estimate of the variance

of ŵh
f is computed as:

Dh
f = Dh

1 + ΛT
1 Λ1Dh

z = GT GDh+1
f + ΛT

1 Λ1Dh
z . (19)

From Eq.(16), it can be seen that the larger Dh
2 is, the less ŵh

2

is considered. Equivalently, according to Eq.(17), the larger

Dh
z is, the less ẑh

contributes to the intermediate estimate.

Moreover, from Eq.(17), it is clear that less than half of ẑh

is considered in each refinement. This is particularly help-

ful to ensure accuracy when sensor noise is large. A further

improvement of accuracy is achieved by performing the re-

finement within the same scale. Finally, according to Eq.(17)

and Eq.(19), it can be seen that in the adaptive scheme, both

estimates and variances are updated in the refining procedure.

2.4. The Adaptive Scheme: Rule 2

We modify Eq.(17) to generatethe following adaptive rule:

ŵh
f = ŵh

1 + Dh
1 (Dh

1 + Dh
z )−1ẑh

= Gŵh+1
f + Λ2ẑh, (20)

where Λ2 = Dh
1 (Dh

1 + Dh
z )−1. In this rule, the upper limit of

the proportion of an increment being considered is 1 instead

of 0.5 shown in rule 1. The limit occurs when the diagonal

components in Dh
z are approaching zeros. The variance of ŵh

f

in this rule can be computed by replacing Λ1 by Λ2 in Eq.(19).

2.5. Same-Scale Updating

The above rules are also suitable for refining velocities within

the same scale. This can be achieved by considering the model

in Eq.(8) and ignoring the matrix G in rules 1 and 2.

3. EVALUATIONS

We examine the performance of the proposed scheme and

the standard scheme described in Section 2.1 using artificial

sequences with ground truth data: the Office sequence [7]

and the Yosemite sequence [8]. To simulate noisy environ-

ments, Gaussian noise is added to the sequences with a pre-

defined Signal Noise Ratio (SNR). To simulate different mo-

tion speeds for the Yosemite sequence, we estimate the op-

tical flows between the 8th frame and the 9th, 10th, 11th,

12th and 13th frames. The ground truth data for each pair

of images are computed by summating all ground truth data

between the starting frame and the ending frame. This re-

sults in maximum speeds of 5.4, 11, 16.5, 22.1, and 27.8 pix-

els/frame, respectively. Because ground truth data are only

available for the mountain region1, the sky region is cut from

the Yosemite sequence. Similarly, for the Office sequence,

we estimate optical flows between the 10th frame and the

11th, 15th, 20th, 25th and 30th frames, respectively. The cor-

respondent maximum speeds are 1.5, 7.6, 15.5, 23.8 and 32.3

pixels/frame. In the experiments, a 2D separable Gaussian

filter with a standard deviation of 1 pixel is used to construct

the pyramids. Spatial derivatives are calculated using the 4-

tap kernel [8]. No pre-smoothing procedure is adopted within

either the spatial or temporal domains. Accuracy is measured

using the Mean Angular Error (MAE) [8].

In the first experiment, we examine accuracy for differ-

ent speeds. We set SNRs to 20 dB and 5 dB, respectively,

to simulate the cases where images are slightly and severely

affected by noise. Examples of the noisy frames are shown

in Fig.1. Here a 5-level pyramid is adopted. The size of the

Fig. 1. Noisy images. Left: SNR=20 dB; Right: SNR=5 dB.

region performing the LS regression is set to 9× 9 pixels for

all levels. ŵh
f is also recursively refined within the same scale

(4 times in our experiment). The results are shown in Fig.2.

It can be seen that the proposed rules provide more accurate

estimates than the standard scheme for different speeds. The

results also demonstrate that rule 1 outperforms rule 2 in all

conditions. The results indicate that, when using a 5-level

pyramid, small motions are more difficult to estimate than

large ones. The adoption of the proposed rules, especially

rule 1, guarantees better accuracy than the standard scheme

for small motions. In the second experiment, we examine the

influence of number of pyramid levels on estimation accuracy.

Here we use pyramids with different numbers of levels to es-

timate optical flows between the 10th and the 11th frames in

the Office sequence and optical flows between the 8th and

the 9th frames in the Yosemite sequence. The corresponding

maximum speeds are 1.5 pixels/frame and 5.4 pixels/frame,

respectively. The results are shown in Fig.3. For small mo-

tions, the optimal number of levels for a single scheme can

be affected by several factors, such as motion structure and

noise condition. For example, in the Yosemite sequence with

velocities of up to 5.4 pixels/frame, the MAE of rule 1 reaches

a minimum with 3 levels when SNR=20 dB and with 4 levels

when SNR=5 dB. Such a difference suggests that additional

1http://www.cs.brown.edu/people/black/
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Fig. 2. The MAEs for different moving speeds.
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Fig. 3. The MAEs for different numbers of pyramid levels

levels can further reduce the influence of noise. However,

the slight accuracy reduction when using 5 levels appears to

show that using a larger number of pyramid levels can lead

to an accumulation of estimation uncertainty. Nevertheless,

the results show that when using a large number of pyramid

levels, the proposed rules, especially rule 1, provides more ac-

curate estimates for small motions than the standard scheme.

Examples of optimal flow estimates are shown in Fig.4.

4. CONCLUSIONS

We have presented a novel adaptive multiscale scheme to im-

prove the accuracy of optical flow estimation. The proposed

scheme models estimation uncertainties of intermediate es-

timates in the cross-scale and same-scale refinements. The

uncertainties are used as weights to reduce the influence of

(a) SNR=20 dB, Standard (b) SNR=20 dB, Rule 1

(c) SNR=5 dB, Standard (d) SNR=5 dB, Rule 1

Fig. 4. Optical flow estimates between frame 8 and frame 9

of the Yosemite sequence.

unreliable increments on estimation accuracy. Our experi-

ments show that the proposed scheme provides more accurate

estimates than the standard scheme for both small and large

motions. It also provides more robust estimates with small

displacements as the number of pyramid levels increases.
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