3D CITY MODELING BASED ON HIDDEN MARKOV MODEL
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ABSTRACT

In this paper, we present an automatic method for the 3D building re-
construction from satellite images. The proposed approach consists
in reconstructing buildings by assembling simple urban structures
extracted from a grammar of 3D parametric models, as a "LEGO”
game. First, the building footprints are extracted through sequences
of quadrilaterals: it allows to define the problem as a causal pro-
cess. Then, the 3D reconstruction stage is realized through a Hidden
Markov Model and the optimal sequences of 3D parametric objects
are found using the Viterbi algorithm.

Index Terms— 3D modeling, building reconstruction, Hidden
Markov Model, Digital Elevation Model

1. INTRODUCTION

Scene modeling and representations of 3D urban areas are critical
in many applications such as urban planning, radiowave reachabil-
ity tests for wireless communications or disaster recovery. Many
automatic methods based on varied approaches such as parametric
models [1], perceptual organization [2], ground based models [3] or
polyhedral approach [4, 5], have been proposed. These methods pro-
vides convincing results using aerial images or/and laser scanning.
With the recent progress in the spatial domain, this problem can
nowadays be tackled by the sub-metric satellite images. Such data
are very interesting, especially for the developing countries where
the aerial and terrestrial data acquisition is often difficult and the
cadastral maps do not exist. However, satellite images have “rela-
tively low” resolution and SNR to deal with 3D reconstruction prob-
lems (0.7 meter resolution for the satellite data used in this paper vs
0.08 meter resolution for aerial images used in [4, 5] for example).
Consequently, contrary to the aerial methods, it is necessary to intro-
duce important prior knowledge concerning urban structures in the
satellite methods in order to face the difference of data quality.

In a previous work [6], a 3D building reconstruction method adapted
to the satellite context has been proposed. This method suffers from
several drawbacks: the generation of many artefacts, a lack of gener-
icity, the tuning of many parameters and the computing time. In this
paper, we propose a new method correcting all these defaults.

The inputs are Digital Elevation Models (DEMs), generated from
satellite images, which are well adapted to global geometric de-
scriptions. The proposed method is based on a structural approach:
it consists in reconstructing buildings by assembling simple urban
structures extracted from a grammar of 3D parametric models (as a
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”LEGO” game). First, the building footprints are extracted through
sequences of quadrilaterals: it allows to define the problem as a
causal process. Then, the 3D reconstruction stage is realized through
a Hidden Markov Model (HMM) and the optimal sequences of 3D
parametric objects are found using the Viterbi algorithm. Finally,
results are shown on complex buildings.

2. BUILDING EXTRACTION

In a previous work [6], the building footprints were modeled by rect-
angle layouts (see Figure 1-(b)) estimated by marked point processes
[7]. Such footprints generate many artefacts in the 3D reconstruction
stage (see Figure 6-(d)).

We propose to regularize these rectangular footprints by improving
the connections between the neighboring rectangles and detecting
the roof height discontinuities inside the footprints (see Figure 1-(c)).
More details concerning this regularization process are available in
[8]. Each building is represented by sequences of connected quadri-
laterals (i.e. quadrilaterals with common edges - quadrilaterals can
even be triangles) which allow to avoid artefacts. This regularization
especially introduces a causal process and so low computing time. In
most of the cases, a building is represented by an unique sequence of
connected quadrilaterals (which can be closed as we can see in Fig-
ure 1-top). However, some buildings owning complex roof junctions
are modeled by several sequences (see Figure 1-bottom).

The obtained footprints allow to define the sequences of 3D-model
supports. The 3D reconstruction stage is detailed in the following.

Fig. 1. (a): Satellite images of two buildings - (b): Rectangular
footprints obtained by a marked point process - (¢): Final footprints
(after the regularization process).
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3. 3D RECONSTRUCTION

3.1. Grammar of 3D-models

The contents of the grammar is a key point. If the grammar is too
limited (such as in [6] where only flat and gable roof models are
available), the method loses genericity. The proposed grammar, de-
noted by M and presented in Figure 2, allows to reconstruct a large
range of buildings. It is composed of the most common roof types
including monoplane roofs (M,), multi-plane roofs (M2.) and
curved roofs (M3,). Each roof type is modeled by a set of parame-
ters knowing the quadrilateral footprint. H;, Hg, ¢ and 7 are param-
eters which respectively represent the rooftop height, the roof gutter
height, the orientation of the roof w.r.t. the quadrilateral base, and
the choice between hipped and straight ends at the roof extremities.
All the models of this grammar are detailed in [8].
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Fig. 2. The grammar of 3D-models (3D and profile views) - P, the
set of parameters of each model.

3.2. Hidden Markov Model formulation

The HMM formulation requires some notations, summarized below:

e S, asetofsitesand I = {As/s € S}, a part of a DEM where
A represents the intensity of the site s.

e (, the sequence of quadrilaterals representing the building
footprints associated with I. N represents the number of
quadrilaterals of the sequence (see Figure 1-(c)).

e S}, the subset of S whose sites are inside the tth quadrilateral
of C.

e y = (yt)i=1..n, the data set where y = {A, € I /s € Si}

e 1, a sequence of 3D-parametric objects knowing the quadri-
lateral footprints C. © = (x+)t=1..8 = (M, 0¢)t=1..n Where
each object z; is defined by both a roof type M,,, € M and
a set of parameters 0; associated with M,,,. In the follow-
ing, z: = (ms,0:) and M,, will be respectively called an
object and a model.

e S,.,, the function from S; to R which associates the roof alti-
tude of the object x+ to each site of S;.

Let us consider (X¢, Y;)i_1, a homogeneous hidden Markov chain
where X = (Xt)t represents the hidden states (i.e the sequences
z of 3D parametric objects) and Y = (Y%): corresponds to the se-
quence of observations (i.e. the data set y). Figure 3 represents the
dependence graph of this chain. A requirement is to be able to build

L1

1 2 3 N-1 N

Fig. 3. Dependence graph of the hidden Markov chain (X, ;)& ,

both the transition probability P(X¢+1 = 2++1|X+ = z¢) and the
local likelihood P(Y: = y¢/ X+ = x¢) !, In the following, these two
terms are detailed.

3.2.1. Likelihood

The local likelihood represents the probability of observing the data
y¢ knowing the object z¢. It can be expressed as :

1 a
P(ys/z¢) = Z exp *F(t)(Szt,yt) (1)

where Z; is a normalizing constant and T'(; (., .) is the distance from
R4St 5 Reard(St) (5 R defined by :

1

VYa,b € RS T8, (a,b) = (Z las — bs|“> 2)

sESy

To sum-up, the local likelihood corresponds to the Z-error of the L
norm between the DEM and the object. In practice, o = % is a good
compromise between robustness and sensitivity to the DEM errors.

3.2.2. Transition probability

The transition probability, which corresponds to the introduction of
prior knowledge concerning the assembling of urban structures, is a
key point in the structural approach and allows to propose realistic
building reconstructions. It is defined through interactions between
neighboring objects. In a previous work [6], too many interactions
have been set up. Their number must be minimal in order to keep

1To simplify notation, we will denote the discrete probability P(X = z)
as P(z)
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robustness and avoid problems of parameter settings. We propose a
simple and efficient transition probability which is defined through a
unique interaction.

All the objects cannot be assembled together (for example, it is not
possible to merge a curved roof with a mansard roof). So, it is nec-
essary to define an assembling law. Two objects x; = (mt, 0t) and
Te+1 = (Myet1,0:41) are said “joinable” (noted z; ~q Tiy1) if
they verify the three following points:

® M¢ = Myy1 OF {mt,mt_,_l} = {11, 12}
e roof orientations ¢+ and ¢+ are the same

e the common edge of the ¢ and (¢t + 1)*" quadrilateral foot-
prints of C is not a roof height discontinuity.

The first point verifies that the two models belong to the same roof
family. The second and third points test whether the rooftops of the
two objects can be connected.

The transition probability consists in favoring the ’joinable” objects.
More precisely, in order to avoid the artefacts, the common parame-
ters of two “joinable” objects are attracted to have similar values. To
do so, the transition probability P(x¢+1|x:) is expressed through a
Gibbs energy U (i.e. P(ziq1]we) = % exp —U(@i11,x:)) defined
as follows:

U@it1,2) = Lz mae} B9(@et1, 1) 3

where 3 € R is the parameter which weights the importance of
the prior with respect to the likelihood. The function g, living in
[—1,0], measures the distance between the common parameters of
two “’joinable” objects.

D(xi,x;
glas, ) = 20ty

0. — 0.
= Ll —Oiwl
Dmaz
@,(k) and gj,( k) correspond to the k" element of the set of the com-
mon parameters of the objects x; and xz; respectively. Doz =

max D(z;,x;) represents the maximum value of the distance. wy,
TiH T

are weights which are introduced in this distance in order to nor-
malize the parameter values according to the metric system. These
weights are computed knowing the XY and Z resolutions and the se-
quence of quadrilaterals C.

Figure 4 shows the principle of this interaction. If the two models
belong to different roof types (for example a mansard roof model
and an elliptic roof model on the top right) or if the two objects do
not have compatible roof orientations (see bottom right), they will
not be “’joinable” and so, the energy will be null. On the contrary,
if the two objects are “’joinable”, the energy will be negative : these
configurations are favored. The nearer the parameters of the two ob-
jects, the lower the energy. The left configuration is the best one.

3.3. Optimization

The Viterbi algorithm [9] is especially adapted to find the optimal
sequence of objects  of this HMM. The algorithm speed depends
on the size of the state space (i.e the discretization step of the state
space). We propose an optimization process composed of two stages.
First, the Viterbi algorithm is applied on the “global” state space
(i.e. with a large discretization step of metric accuracy). The best se-
quence allows to select the relevant models and parameter values and
so to define a new state space which is reduced and focused on the
objects of interest . Then, a second Viterbi algorithm is used on this
detailed and reduced state space (i.e. with a small discretization step

\
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Fig. 4. Principle of the prior energy - examples of various interaction
cases.

of submetric accuracy) in order to have an accurate solution. This
process does not certify to obtain the optimal sequence of the global
state space with the small discretization step. However, it gives in
practice a convincing solution close to the optimal one by reducing
computing time by a factor 10 compared to [6]. Concerning the al-
gorithm initialization, the P(x1) are equiprobable which means no
model of M is favored. For global scenes, all the sequences are
independently optimized using this process.

4. RESULTS

The results have been obtained from satellite images (PLEIADES
simulations) on a dense downtown owning an important variety of
roof types. DEMs have been generated from 3-view images using
a multi-resolution implementation of a Cox and Roy optimal flow
matching image algorithm [10]. The ground truths are raster images
provided by the French Mapping Agency (IGN).

Figure 5 presents varied examples of reconstructed buildings (own-
ing various roof types, roof height discontinuities, closed structures
or/and complex roof junctions) associated with ground truths, satel-
lite images and building footprints. These results are convincing in
general. The five first examples provide good descriptions. Even
if some details are omitted, the global shapes of buildings are re-
spected compared to the ground truths and the generalization level
is acceptable for satellite data in an automatic context. Few artefacts
are generated on the 4" and 5 examples which means the causal
process is adapted to buildings owning complex roof junctions. The
last example shows the limits of this approach. Some footprints (es-
pecially the curved footprints) cannot be modeled by quadrilateral
layouts. Figure 6 shows a result on a piece of downtown which is
convincing compared to the modeling obtained by [6] on the same
urban scene. The Z-RMSE on common building footprints has been
reduced by 30% (i.e. Z-RMSE = 2.1 meters). The esthetic aspect of
the modeling has also been improved. More results and evaluation
details can be found in [8].

5. CONCLUSION

The proposed method provides convincing results: the global shape
of buildings is respected and the generalization level is acceptable
for satellite data in an automatic context. The causal process defined
through a HMM allows to have low computing times and avoid arte-
facts. In future works, it would be interesting to estimate the pa-
rameter 3 of the HMM using EM algorithm. Moreover, we should
evaluate the potential of this method on other kinds of cities such as
typical north American urban areas.
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Fig. 5. Examples of reconstructed buildings (4*" row) associated with satellite images (1% row), ground truths (

footprints (3" row).

(1]

(2]

(3]

(4]

(3]

2"? row) and quadrilateral

(d)

Fig. 6. Satellite image of a piece of downtown (a) - quadrilateral footprints (b) - 3D results (¢) - 3D results obtained by [6] (d).
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