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ABSTRACT

This paper presents a new method for recovering the shape of

hybrid surfaces that have both diffuse reflection and specular

reflection using shape from shading (SFS). The image irradi-

ance equation has been derived as an explicit partial differ-

ential equation (PDE) under the assumptions of orthographic

camera projection and distant point light source. The reflectance

model of Ward has been used to express the hybrid reflection

as a linear combination from the diffuse and specular compo-

nents. The resulting PDE is solved using the Lax-Friedrichs

sweeping method. The proposed algorithm is evaluated by us-

ing both synthetic data and real images and the experimental

results show the efficiency of the approach.

Index Terms— Shape from Shading, Ward Model, Lax-

Friedrichs sweeping.

1. INTRODUCTION

The shape from shading (SFS) problem is to analyze the bright-

ness variation in a single image of a scene to recover the

3D-shape of that scene. SFS was formally introduced by

Horn [1] who formulated the SFS problem by a nonlinear

first order partial differential equation (PDE) called the image
irradiance equation. This equation models the relation be-

tween the shape of an object and its image brightness under

known illumination conditions. During the last three decades,

a large number of different SFS approaches have emerged

[2, 3, 4, 5, 6] (for survey see [7, 8])

In general, the brightness of a surface patch depends on

its orientation relative to both the light source and the viewer.

Under the simplifying assumption that the viewer and the

light source are far from the object, the image irradiance
equation can be written as follows:

E(x) = R(n̂(x)) (1)

where E(x) is the image irradiance at the point x and R(.) is

the radiance of a surface patch with unit normal n̂(x).
For simplification purposes, most of the existing SFS ap-

proaches, e.g., [4, 5, 9] assume that the object has a per-

fectly diffuse (Lambertian) surface. Under real world cir-

cumstances the surface materials are not perfectly diffuse nor

perfectly specular. Most of real surfaces have a hybrid re-

flectance which can be approximated by a linear combination

of specular reflectance and diffuse reflectance.

Modeling only the diffuse reflectance in the SFS image

irradiance equation may lead to erroneous results when secu-

larities are present since the specular highlights may be mis-

interpreted as high curvature surface features.

In the literature, only a small number of SFS algorithms

have been proposed for surfaces with both specular and dif-

fuse reflectance. One of these algorithms was presented by

Lee and Kuo [10] where a generalized reflectance map was

used. They discretized the image irradiance equation with

a triangular element surface model which involved only the

depth variables. The shape was computed by linearizing the

resulting nonlinear equations and minimizing a quadratic en-

ergy functional. In addition to being computationally expen-

sive, the given results for this method were not promising.

According to their modeling, Lee and Kuo noticed that ”the

non-Lambertian surface can hardly be recovered correctly with

two photometric stereo images” [10].

For shiny curved objects, Ragheb and Hancock [11] have

developed a maximum a posteriori probability estimation method

to estimate the mixing proportions for Lambertian and spec-

ular reflectance, and in the same time, to recover the surface

orientation.

In this paper, we formulate the SFS problem for surfaces

that have both diffuse and specular reflections using the hy-

brid reflectance model of Ward. The proposed algorithm can

handel the extreme cases as well, i.e., Lambertian surfaces

and very shiny surfaces.

2. WARD REFLECTANCE MODEL

The reflectance model proposed by Ward [12] is physically

realizable variant of Phong model [13]. Ward’s model ac-

counts for both the diffuse and the specular components of

the reflectance in a simple formula that is constrained to obey

fundamental physical laws, such as conservation of energy

and reciprocity. The model has been validated by collecting

many measurements from real samples using a simple reflec-

tometry device that was designed by Ward and the research

team in Lawrence Berkeley Laboratory [12].
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Fig. 1. Definitions of reflection parameters and angles. ĥ =
(hx, hy, hz) = ŝ+v̂

|ŝ+v̂| .

The expression for Ward’s reflectance model is given by:

Lr(θi, φi, θr, φr)

=
ρd cos θi

π
+ ρs

√
cos θi

cos θr

exp[− tan2 δ/σ2]
4 π σ2

; (2)

where ρd is the diffuse albedo and it determines the pro-

portion of incoming light reflected diffusely. The higher the

value of ρd, the brighter the surface. The specular albedo

ρs controls the proportion of incoming light that is reflected

specularly. Small values of this parameter yield matte sur-

faces while higher values yield glossy and metallic surfaces.

The parameter σ is the standard deviation of the surface rough-

ness at a microscopic scale. Changing this parameter leads

to changes in the ”spread” of the specular reflection. Small

values of the roughness parameter lead to crisp specular re-

flections, while Large values lead to blurred reflections like

unpolished metals. The angle δ is the angle between vector

n̂ and ĥ as shown in Fig. 1.

3. THE IMAGE IRRADIANCE EQUATION FOR
HYBRID SURFACES

In this section the SFS image irradiance equation for hybrid

surfaces is derived using the following assumptions: (1) The

object is far from the camera, therefore the camera projection

can be approximated by an orthographic projection; (2) The

scene is illuminated by a point light source located far away

from the surface; (3) the surface reflectance is modeled by

Eq. 2.

Assume that the compact domain Ω ⊂ R
2 is the image

domain and I : Ω → [0, 1] is the image intensity. The surface

is represented by S = {(x, u(x)) /x ∈ Ω} where u(x) is

the surface height at point x above the xy plane. The unit vec-

tors ŝ = (sx, sy, sz) and v̂ = (vx, vy, vz) are used to specify

the directions of the light and the camera respectively. The

symbol τs refers to the first two components of ŝ. Similarly

the symbol τv refers to the first two components of v̂.

The unit normal vector at the point x on the surface is

expressed as a function of the surface gradient as n̂(x) =
(−∇u(x), 1)/

√
1 + |∇u|2.

From the geometry illustrated in Fig. 1, we derive the fol-

lowing expression for the irradiance equation:

I(x)

" p
1 + |∇u|2

−τs · ∇u + sz

#
− ρd

π

− ρs

4 πσ2

s
1 + |∇u|2

(−τs · ∇u + sz)(−τv · ∇u + vz)

× exp

»−1

σ2

(1 + |∇u|2) − (−τ̂h · ∇u + hz)
2

(−τ̂h · ∇u + hz)2

–
= 0. (3)

Note that the reflected radiance Lr has been replaced by

the measured image gray value I by assuming a linear rela-

tionship between them and dropping the scaling factors.

3.1. Solving the proposed PDE

To solve the image irradiance equation ( 3) a powerful nu-

merical tool is needed. One of the candidate tools is the Lax-

Friedrichs Sweeping (LFS) method [14]. The main advantage

of LFS method is its ability to deal with both convex and non-

convex Hamiltonians with any degree of complexity. We used

the LFS method in our previous work [15] to solve the SFS

problem for a class of non-Lambertian diffuse surfaces and it

shows a good peformance.

To solve a PDE with LFS method we should put it in the

following form:{
H(∇u, x) = R(x) ∀x ∈ Ω
u(x) = ψ(x) ∀x ∈ ∂Ω,

(4)

Where ψ is a Dirichlet boundary condition.

For Eq. 3 the expressions of H and R are given by:

H = I(x)

" p
1 + |∇u|2

−τs · ∇u + sz

#

− ρs

4 πσ2

s
1 + |∇u|2

(−τs · ∇u + sz)(−τv · ∇u + vz)

× exp

»−1

σ2

(1 + |∇u|2) − (−τ̂h · ∇u + hz)
2

(−τ̂h · ∇u + hz)2

–
= 0;

R =
ρd

π
. (5)

In this work, we assume that the object is in front of a back-

ground that is used as a boundary condition with zero depth.

The 2D version of the LFS method [14] is applied to recover

the shape of the scene form the input image using the H and

R expressions in Eq.5.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed approach,

we have conducted several experiments on both synthetic and
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Fig. 2. Ground truth maps used to generate the synthetic im-

ages.

image name mean of the standard deviation mean of the
absolute error of the absolute error gradient error

sphere (a) 0.039 0.037 0.0026
sphere (b) 0.041 0.045 0.0031
sphere (c) 0.036 0.034 0.0026

vase (a) 0.022 0.035 0.0023
vase (b) 0.024 0.044 0.0030
vase (c) 0.037 0.058 0.0032

pot (a) 0.055 0.059 0.0030
pot (b) 0.070 0.063 0.0028
pot (c) 0.099 0.089 0.0031

Table 1. The error measures for the results in Fig. 3.

real images. The test set consists of three synthetic data sets

and four real images. The synthetic images were generated

using the depth map of a sphere, a vase and a synthetic pot as

shown on Fig. 2. The maximum depth of all theses objects is

normalized to one.

4.1. Synthetic images

For the quantitative analysis, we compare the recovered depth

with the reference depth map (Fig. 2) and compute the mean

and the standard deviation of the absolute error. We also pro-

vide the mean of the absolute error in the two gradient compo-

nents. Figure 3 shows nine synthetic images and their corre-

sponding shapes recovered by the proposed SFS. These syn-

thetic images are generated using three different settings as

detailed in the caption of Fig. 3. As can be clearly seen from

the figure, and the error measures in Table 1, the shapes are

recovered with very high precision for all cases. Even for im-

ages with large specular component (see column (c) of Fig. 3)

the error is very small.

4.2. Real images

The applicability of the proposed SFS approach for real data

is tested experimentally by using four real images for a metal-

lic bar, a bottle, and a hair dryer. These images and their

recovered shapes are shown on Fig. 4. For all cases, the pa-

rameter values of Ward model are selected manually.

As shown in Fig. 4, the shapes are recovered with good

accuracy for all objects. In order to better judge the perfor-

mance of the proposed algorithm, we used a Cyberware 3D

scanner [16] to get a very accurate height map for the bot-

tle. Figure 5 compares between the output of the 3D scanner

and the estimated shape produced by the SFS algorithm using

column (a) column (b) column (c)

Fig. 3. Experiments on three sets of synthetic images: sphere,

vase and pot. The synthetic images are displayed in the

first, the third and the fifth row and their corresponding re-

covered shapes are displayed in the second, the fourth and

the sixth row respectively. The images in column(a) are

generated with s = (0, 0, 1), ρd = 0.67, ρs =
0.075 and σ = 0.2. The images in column(b) are gen-

erated with s = (−0.5, 0, 1), ρd = 0.67, ρs =
0.075 and σ = 0.2. The images in column(c) are generated

with s = (0, 0, 1), ρd = 1, ρs = 0.2 and σ = 0.1. For

all cases v = (0, 0, 1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Experiments on real images. (a) a metallic bar cap-

tured under s = v = (0, 0, 1) (c) a metallic bar captured un-

der s = (0.5, 0, 1) and v = (−0.2, 0, 1). (b,d) the recovered

shapes of (a,c) respectively. (e,f) a bottle and its recovered

shape. (g,h) a hair dryer and its recovered shape.
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Fig. 5. Contour plot for the height map of the bottle: (a) us-

ing the height map produced by the Cyberware 3D scanner,

(b)using the height map produced by the proposed SFS algo-

rithm

contour plots. The height contours of the recovered shape in

Fig. 5(b) is close to their corresponding contours in Fig. 5(a)

which indicates the accuracy of the recovered shape.

5. CONCLUSION

In this paper we have formulated the SFS for hybrid surfaces

that have combination of diffuse and specular reflections. Us-

ing the reflectance model of Ward and the assumptions of or-

thographic camera and distant light source, the image irradi-

ance equation is derived. The resulting PDE is solved using

a fast numerical algorithm based on Lax-Friedrichs sweeping

method. The main advantage of this numerical algorithm is its

capability of handling the complexity of the proposed PDE.

The SFS algorithm is evaluated using both synthetic and real

data sets and the experimental results show the potential of

the approach.
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