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ABSTRACT

In this paper, we propose a probabilistic framework for 
reconstructing scene geometry utilizing prior knowledge of a class 
of scenes, for example, scenes captured by a camera mounted on a 
vehicle driving through city streets.  In this framework, we assume 
the video camera is calibrated, i.e., the intrinsic and extrinsic 
parameters are known all the time.  While we assume a single 
camera moving during capturing, the framework can be 
generalized to multiple cameras as well.  Traditional approaches 
try to match the points, lines or patches in multiple images to 
reconstruct scene geometry.  The proposed framework also takes 
advantage of each patch’s appearance and location to infer its 
orientation using prior information based on statistical learning 
from training data. The prior hence enhances the geometry 
reconstruction performance.  We show that prior-based 3D 
reconstruction outperforms traditional 3D reconstruction with both 
synthetic data and real data, especially in the textureless areas.  
 
Index Terms— Visual Learning, Geometry, and Stereo 
  

1. INTRODUCTION 
 
Scene reconstruction and rendering have been a popular research 
topic for decades [1].  Given a set of images captured by one or 
more cameras, the goal of scene reconstruction and rendering is to 
reproduce a realistic image of the scene at an arbitrary viewpoint. 

Using a multi-camera system, Collins [2] proposed an 
efficient multi-image matching technique using plane-sweeping for 
geometry reconstruction.  Recently, Akbarzadeh et al. [3] extended 
the plane-sweeping algorithm by sweeping planes in multiple 
directions for urban geometry reconstruction.  Zitnick et al. [4] 
used the modified plane-sweeping algorithm to estimate the 
current scene’s geometry with a smoothness constraint between 
patches and a spatial consistency constraint between images.  
Other approaches for geometry estimation include voxel coloring 
[5] and stereo [6] methods, etc.  

Most existing reconstruction approaches match points, lines 
or patches among multiple images for scene reconstruction.  
Considering that humans can easily understand the geometry 
structure of the scene from a single image based on prior 
knowledge, Hoiem et al. [7] proposed prior-based geometry 
estimation for outdoor scenes using statistical learning.  They 
could reconstruct a coarse 3D model from a single image by 
classifying each patch into ground, vertical or sky.  Saxena et al. 
[8] applied supervised learning to predict the depth map of an 
outdoor scene also from a single image.  Their depth-map 
estimation model used a Markov Random Field that contained 

multi-scale local and global image features, and modeled both the 
depth at each individual point and the relation between depths at 
neighboring points. 

In this paper, we reconstruct scenes from multiple images 
captured by a single calibrated camera mounted on a moving 
vehicle as illustrated in Figure 1(a).  We assume that the camera is 
calibrated based on the vehicle’s GPS sensor, speed sensor, and 
gyro/yaw-rate sensor.  We represent the scene by small patches 
with different orientations: horizontal (e.g., ground), vertical (e.g., 
building facets towards the street and parallel to the camera 
motion), and frontal (e.g., building facets towards the street and 
perpendicular to the camera motion).  Our prior-based geometry 
reconstruction algorithm extends Hoiem’s approach to reconstruct 
dense depth maps from a moving calibrated camera as shown in 
Figure 1(b).   

 
(a) Capturing illustration  (b) Prior-based geometry reconstruction    
Figure 1. Prior-based geometry capturing and reconstruction.  The 

depth is represented by a color map. 
The paper is organized as follows.  In the next section, we 

describe the prior-based geometry reconstruction.  In Section 3, we 
show experimental results and compare the geometry 
reconstruction quality between the approaches with and without 
prior information.  Conclusions are given in Section 4.  

 
2. PRIOR-BASED GEOMETRY RECONSTRUCTION 

 
In this section, we describe the prior-based geometry 
reconstruction using a calibrated moving camera.   We first 
provide an overview of the prior learning method and the prior-
based geometry reconstruction method, and then introduce each 
component in detail.  
 

2.1. Overview

As shown in Figure 2, for prior learning, we first segment training 
images into patches using the efficient graph-based image 
segmentation technique in [9].  We then train the orientation 
estimator based on the labeled patches.   

For the prior-based geometry reconstruction, input images are 
first segmented into patches Sj [9].  We then infer each patch’s 
orientation distribution  using the orientation estimator.  We 
calculate the color consistency of every patch among multiple 
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images at the assumed depth d with a given orientation o to 
estimate the conditional probability .  The initial likelihood 
of patch’s geometry  is approximated by the product of the 
prior probability  and the conditional probability .  A 
coarse patch-based smoothing algorithm is then applied to refine 
the initial geometry likelihood  between its neighboring 
patches and between its corresponding regions at different 
viewpoints iteratively.  The maximum likelihood estimates of 
patch’s depth d  and orientation , based on the resulting 

,  determine the initial depth map  and the orientation 
map at each pixel position x.  The initial depth map  is 
further smoothed iteratively per pixel between images to create the 
refined depth map .  Next we will explain each of these steps 
in more detail. 
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Figure 2. Prior learning and prior-based geometry reconstruction 

 

2.2. Prior-Based Orientation Estimation 
 

Prior-based orientation estimation contains two stages:  learning 
and inference.  Similar to human vision system, texture, color and 
location features are extracted from each patch.  The texture 
feature is the 15 mean values of the absolute responses of the 
Leung-Malik filter bank [10].  The color feature is the 6 mean 
values of RGB and HSV.  And the location feature is the 2D mean 
location in the image coordinates.   

In the prior learning stage, we first extract the features from 
the training patches, and then train the orientation estimator using 
Support Vector Machines (SVM) probability estimation [11] based 
on the labeled (frontal, vertical, or horizontal) patch features.  
Compared to [7], we apply a weaker statistic learning approach 
only using patch’s features without further grouping the patches. 

In the inference stage, we calculate the prior distribution of 
patch’s orientation.  We first extract patch Sj’s features, and then 
determine its orientation distribution  using the orientation 
estimator.  The SVM-based estimator provides the probabilities of 
all possible orientations.  
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2.3. Initial Geometry Estimation 
 

The initial distribution of the patch’s geometry  is 
evaluated by the product of the orientation probability  and 
the conditional probability  of the patch’s depth d given the 
orientation o.  
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                         (1) 
The conditional probability  is determined based on 

color consistency between images using the oriented plane-
sweeping algorithm with the given orientation [3] as shown in 
Figure 3.  Patch S
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j’s each depth with any given orientation is 

evaluated by its color consistency between multiple images 
at the current viewpoint using the following robust function. 

)(
jdiff

Se

k jSpixel
k

k

jS

jdiff th
Se

22

2

num
1)( ,                        (2) 

where 
kcorcurkcorcurkcorcurk ,,,  is the RGB color 

difference, parameter th is a constant, and  is the number of 
the pixels in S
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Figure 3. Oriented plane-sweeping algorithm  

The conditional probability 
j

 is determined by the 
color consistency measures :  
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2.4. Patch-Based Smoothing 
 

We refine patch’s initial distribution 
j

 between its 
neighboring patches and between its corresponding regions at 
multiple viewpoints iteratively, which is similar to [4], with the 
extension of smoothing for additional orientation estimation. 
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The likelihood distribution of the patch’s geometry  is 
updated iteratively with two constraints. 
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where   enforces patch’s smoothness constraint between 
the neighboring patches, and 

,
c

kj
 enforces patch’s consistency 

constraint in each projected region in multiple images.   
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Figure 4. Patch-based smoothing  
Let sl denote one of patch Sj’s neighboring patches as shown 

in Figure 4.  The geometry smoothness coefficient  
enforces that the neighboring patches (S
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j and sl  in Frame 1) with 
similar colors should have similar depths (d  

l
) and the same 

orientations (o = 
l
).  

l
d  and 

l
 are the  maximum likelihood 

estimates of its depth and orientation based on .   

d̂
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We assume that if patches Sj and sl have the same orientation, 
the depth d of patch Sj is modeled by a contaminated Gaussian 
distribution with the mean  and variance as follows.   
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where  is Gaussian distribution, and ),;( 2meanxN  and c are 
small constants.  We estimate the variance  using 1) the color 
similarity of the patches 

lj ,
, which  measures the color difference 

between patches S

2

l

j and sl, 2) the neighboring measure 
lj

b
,
, which is 

the percentage of the patch Sj’s border between patches Sj and sl, 3) 
and the geometry maximum likelihood for patch sl: , 
which represents the accuracy of  the maximum likelihood 
estimates for patch s
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lll

odP

l’s geometry. 
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where v and  are constants.  Therefore, if patch S2

j and its 
neighboring patch sl have similar colors, and patch Sj’s depth and 
orientation are consistent with its neighbor’s depth and orientation 
maximum likelihood estimates, we expect  to be large. ),( odn

j

The spatial consistency coefficient  ensures that the 
patch S

),(
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j’s depth and orientation estimates are consistent with the 
depth and orientation estimates at the viewpoint k.  We compute 

 based on spatial consistency without occlusion, visibility, 
and patch S
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1. Spatial consistency without occlusion.  We first project patch Sj 
with the depth d and orientation o onto a neighboring image.  We 
then calculate patch Sj’s projecting distribution based on 
the geometry distribution at the projected viewpoint k to estimate 
the spatial consistency without occlusion. 
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where r(k,x) is the patch index at the viewpoint k, on which the 
corresponding pixel of the pixel position x on patch Sj is.  And 

jS  is the number of the pixels on patch Snum j.  If the projected 
region’s depth and orientation maximum likelihood estimates are 
consistent with patch Sj’s estimates, we expect to be large 
when patch S

),(
,

odbt

kj

j is visible in Frame 2 as shown in Figure 4.  
2. Visibility.  Due to the possible occlusions, a patch might not 
have the corresponding pixels at another viewpoint.  We estimate 
the overall visibility likelihood vj,k, that the patch is visible. 
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If the patch Sj is visible at the viewpoint k (Frame 2) as shown 
in Figure 4, we can find its corresponding region when we search 
the space of depth d and orientation o.  The ground-truth solution 
and its neighboring solutions offer large  values.  
Otherwise, we can not find its corresponding region when we 
search the space of depth d and orientation o.  No solution 
provides large  value.  Therefore, we use v
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and computational-efficient measure of patch’s visibility.   

We also estimate the specific visible likelihood vcj,k(d,o) that 
patch Sj is visible at the viewpoint k, given the depth d and 
orientation o.  
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, where h(x) 
is the Heaviside step function and  is the maximum likelihood 
depth estimate of patch . 
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This suggests that if patch S
s

j is visible at the viewpoint k, its 
estimated depth should not be under the surface of the estimated 
depth map at the viewpoint k. 

Now, we combine the visible and occluded cases.  If the patch 
is visible,  is calculated from the visible consistency 
likelihood . Otherwise, its occluded consistency 
likelihood is , where the uniform prior 

.  size(d) and size(o) are the sizes of the depth 
and orientation hypothesis spaces.  Therefore, 
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2.5. Pixel-Based Smoothing 
 

The maximum likelihood estimates of each patch’s depth d  
and orientation o  based on  determine the initial depth 
map and the orientation map for each pixel x.   
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odWe further refine the depth map  iteratively between 
images [4].  For each pixel x at the current viewpoint, we find its 

corresponding pixel y at the neighboring viewpoint k.   If the 
corresponding pixel’s depth  is similar to pixel x’s depth 

,  is replaced by the average of  and .   
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3. EXPERIMENTAL RESULTS 

 
We first showed the experimental results of the prior-based 
orientation estimator based on a single image.   

We trained the SVM-based orientation estimator with 6670 
labeled patches, extracted from 49 color images at 320x240 pixels.  
The sample images for training the orientation estimator were 
shown in Figure 5.   

 
Figure 5. Sample images for training the orientation estimator 

We inferred the orientation distribution of each image patch 
using the orientation estimator.  In Figure 6, we showed the 
classification results of the orientation estimator on a sample 
image with the maximum likelihood estimates represented by the 
shaded colors: red (horizontal), green (vertical), and blue (frontal). 
It achieved the classification accuracy: 85%. 

 
       (a) Sample image  (b) Classification results 

Figure 6. Prior-based orientation estimation results 
We also compared our simple orientation estimator with 

Hoiem’s orientation estimator [7] using their online database [12].  
We trained and tested our orientation estimator on their training 
and testing data provided.  On a test set of 62 novel images, Hoiem 
reported that 87% of the pixels were correctly labeled into ground, 
vertical, or sky.  We achieved the accuracy of 85% of the pixels 
correctly labeled in the same classification task, while our simple 
algorithm ran more than 3 times faster than Hoiem’s algorithm as 
shown in Table 1. 

Table 1. Performance comparison of the orientation estimators 
 Our algorithm Hoiem’s algorithm 

Classification Accuracy 85% 87% 
Time/Frame 1.8 sec 7.6 sec 

 

Next, we showed the experimental results of the prior-based 
geometry reconstruction of stationary scenes. 

We ran experiments on multiple synthetic images of a 
stationary street simulated by POV-ray [13].  As illustrated in 
Figure 7, six images were captured by a backward-moving camera 
at 320x240 pixels with the known intrinsic and extrinsic camera 
parameters as inputs.   

Each image was segmented into small patches, and patch’s 
prior orientation probabilities were inferred based on patch’s 
appearance and location.  We applied the prior-based geometry 
reconstruction algorithm on these input images to reconstruct the 
depth map at each viewpoint.    

We compared the reconstruction results of the proposed prior-
based algorithm with the estimated prior distribution  and the 
results without using any prior, which were the oriented plane-
sweeping algorithm [3] and our smoothed version of the oriented 
plane-sweeping algorithm with the patch-based smoothing and the 
pixel-based smoothing.   
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Figure 7. Input images of a stationary street scene 

 
Figure 8. Depth map comparison of a stationary street scene  

Table 2. Performance comparison of different algorithms 
Depth map reconstruction % Error/Pixel

With prior 3.5% 
Without prior (Oriented plane sweeping) 7.2% 
Without prior (Smoothed oriented plane sweeping) 4.1% 

We compared the resulting depth maps at the first frame’s 
viewpoint as shown in Figure 8 and Table 2.  The dynamic depth 
range of the scene is assumed to be 200.  Compared with the 
ground-truth depth map, the prior-based method provided the 
reconstructed depth map with 7/200=3.5% error per pixel on 
average, which is better than the approaches without any prior 
knowledge.  The oriented plane sweeping algorithm offered 
14.4/200=7.2% reconstruction error per pixel.  The smoothed 
oriented plane-sweeping algorithm achieved 8.4/200=4.1% error 
per pixel.  The algorithms without prior knowledge had difficulty 
in reconstructing the depth of the school bus, buildings, and 
ground areas as shown in Figure 8. 

We also showed the experimental results in a real garden 
scene.  A forward moving camera captured seven input images at 
320x240 pixels as shown in Figure 9.  We calibrated the camera’s 
intrinsic parameters (camera’s focal length and optical center) with 
checker board patterns offline and the extrinsic parameters (the 
translation vector and the rotation matrix) with markers on the 
ground using Zhang’s method [14].  

We applied the prior-based geometry reconstruction 
algorithm on these input images to reconstruct the depth map and 
orientation map at the fourth frame’s viewpoint.  We compared the 
results of these three algorithms again.  The prior-based method 
provided better orientation map than the uniform prior approaches, 
especially in the textureless areas (ground and sky) in Figure 10.  
Although the smoothed oriented plane-sweeping algorithm had 
better and smoother results than the oriented plane-sweeping 
algorithm, it was still difficult to find the correct orientation in the 
textureless areas without any prior knowledge.  Therefore, the 
prior-based method had better estimated depth maps than the 
uniform prior approaches in Figure 11. 
 

4. CONCLUSIONS 
 
In this paper, we proposed a probabilistic framework for 
reconstructing scene geometry utilizing prior knowledge. 
Traditional approaches try to match the points, lines or patches in 
multiple images to reconstruct scene geometry.  Our framework 
also takes advantage of each image patch’s appearance and 
location to infer its orientation using statistical learning.  We 
showed that the prior-based reconstruction methods outperformed 
traditional reconstruction methods with both synthetic data and 
real data, especially in the textureless areas (a challenge problem 
for most traditional approaches). 

 
Figure 9. Input images of a garden scene 

 
Figure 10. Orientation map comparison of a garden scene 

 
Figure 11. Depth map comparison of a garden scene 
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