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ABSTRACT

Image Cube Trajectory (ICT) analysis is a new and robust
method to estimate the 3D structure of a scene from a set of 2D
images. For a moving camera each 3D point is represented by a tra-
jectory in a so called image cube. In our previous work we have
shown that it is possible to reconstruct the 3D scene from the pa-
rameters of these trajectories. A key component for this process is
the trajectory detection within the cube. It is based on the image
cube parameterization as well as the robust estimation of the tra-
jectory color and trajectory color variation. In this paper we will
focus on the second problem in more detail. We propose an algo-
rithm which estimates the trajectory parameters in sub-pixel resolu-
tion with high accuracy. The corresponding 3D scene structure can
be reconstructed with high level of detail even for complex scenes,
multiple occlusions and very fine structures.

Index Terms— 3D scene reconstruction and modeling, multi
view scene analysis, structure from motion

1. INTRODUCTION

The estimation of depth information from 2D images has received
much attention in the past decade. The basic problem of recover-
ing the 3D structure of a scene from a set of images is the corre-
spondence search [1]. Given a single point in one of the images its
correspondences in the other images need to be detected. Depend-
ing on the algorithm two or more point correspondences as well as
the camera geometry are used to estimate the depth of that point
[2]. However, for complex real scenes the correspondence detection
problem is still not fully solved. Especially, in the case of homoge-
neous regions, occlusions, or noise, it still faces many difficulties.
It is now generally recognized that using more than two images can
dramatically improve the quality of reconstruction.

One method for the simultaneous consideration of all available
views is Epipolar Plane Image (EPI) analysis [3]. An Epipolar Plane
Image can be thought of being a horizontal slice (or plane) in the
image cube that can be constructed by collating all images of a se-
quence [1, 4]. It is defined for a linear equidistant camera movement
only. In this case projections of 3D object points become straight
point trajectories in the image cube which occur as lines on corre-
sponding EPIs. The principle of EPI analysis is the detection of all
point trajectories (the EPI-lines) in all available EPIs. The related
3D points are reconstructed from the parameters (shape, color) of
the detected EPI-lines.

The advantage of this approach is the parallel analysis of all
available views. Compared to other multi view approaches, such
as for example the voxel coloring technique [5], a maximum of
available information is exploited for the reconstruction of 3D scene
structure. This gives a maximum of reconstruction accuracy for
both, the geometric as well as the colorimetric properties of the
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Fig. 1. ’Flower’ sequence, circular camera path, top left) sample im-
age, top right) image cube representation, bottom) trajectory struc-
ture in the image cube

reconstructed 3D scene points. Further, complex scene structures
with multiple occlusions and high level of detail can be handled ef-
ficiently [4]. The disadvantage of EPI analysis is its restriction to
linear equidistant camera movements.

For non-linear camera movements 3D points do not appear as
lines on corresponding EPIs. Rather, they are represented by com-
plex trajectories on arbitrary 3D surfaces within the image cube. The
EPI-line approach cannot be applied for this case. Fig. 1 top right il-
lustrates this at the example of a circular moving camera. One idea
to solve this problem was presented in [6]. The authors suggest a
piecewise linear approach where small segments of the object point
trajectories are approximated by lines. Unfortunately, this reduces
the amount of reference images and the robustness of the 3D recon-
struction significantly.

In [7, 8] we have introduced a new concept called Image Cube
Trajectory (ICT) analysis that overcomes the restrictions of EPI anal-
ysis and extends it to more general camera movements. The main
idea of the proposed approach is the parameterization of the image
cube based on the estimated camera parameters1. This parameteriza-
tion is used to derive shape and position of 3D point trajectories (the
so called ICTs) in the image cube as well as the trajectory occlusion
ordering scheme. Based on this information an occlusion compat-
ible search strategy is defined. It is based on the construction of a
so called search space [10] which, again, depends on the estimated
camera parameters and the given image cube parameterization. The
search space represents the existence probability of all possible ICTs
within the image cube. This probability is determined by statistical

1Robust self-calibration systems are well known in the literature [9]
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Fig. 2. Model for sub-pixel color accumulation in the image cube,
left) trajectory model, right) simplified version

evaluation of the color variation along a given ICT. This method is
based on the simplified model that a 3D point is projected into all
camera positions with the same color.

Previous work on the topic of ICT analysis mainly deals with
several aspects of image cube parameterization [7, 8] as well as the
development of efficient search strategies [10] and the optimization
of the considered search space [11]. Nevertheless, the quality of the
reconstruction result highly depends on the robustness of the eval-
uation of ICT existence, i.e. the detection of the ICTs in the image
cube and the reconstruction of the overall trajectory color. Especially
for scene structures with high level of detail this task may become
rather complex. Fig. 1 bottom illustrates this for the example of the
’flower’ sequence. The width of the trajectories is smaller than the
image pixel size. Therefore, the projected 3D points are blended
with the background as well as the neighboring points on pixel level.

The problem of robust ICT detection and color reconstruction
will be the main focus of this paper. We propose a new algorithm
which works on sub-pixel level and extends the rather simple and
straight forward approach proposed in [7]. In the following, we will
firstly describe the general process of image cube trajectory detec-
tion. Afterwards, we discuss the problem of enhanced trajectory
color reconstruction on sub-pixel level. We propose an accumulative
color and mask buffering scheme. Further, we will discuss the in-
fluence of quantization error to the prediction result. We show, that
this error can be estimated from the trajectory shape. Finally, the
proposed algorithms are evaluated by experiments.

2. TRAJECTORY DETECTION IN THE IMAGE CUBE

The main two purposes of trajectory detection are to determine the
probability of an ICT to exist in the image cube and to estimate
the overall ICT color. The algorithm is based on the given camera
setup, the derived image cube parameterization and the correspond-
ing search space. For each search space positions a set of ICT param-
eters is generated which describes the ICT shape in the image cube.
In order to evaluate the probability of ICT existence in the cube the
statistical properties of the color elements along a given ICT shape
are determined. One can think of this process as correlating a virtual
ICT with the real image cube.

To solve this task, we have proposed a method which is based
on the assumption that the color of the projected 3D points in the
image cube is constant [7]. Therefore the probability of a given ICT
to represent a 3D point on the object surface can be measured by
the color variation along the trajectory. The straight forward way to
solve this problem is to derive the ICT existence probability from
the standard deviation of the colors of all ICT elements [7]. If the
trajectory exists the standard deviation is low. In this case, the mean
value of all ICT color elements represents the overall ICT color, i.e.
the reconstructed color of the corresponding 3D point.

While this method works well for wide trajectory stripes, its ro-
bustness decreases drastically for ICTs which have a width equal

or less than one pixel. In this case the original pixel color will be
blended with scene background and neighboring trajectories. This
problem is illustrated in fig.1 bottom left for a set of real trajectories
and in fig. 3 top for a single synthetic ICT.

3. SUB-PIXEL TRAJECTORY COLOR ESTIMATION

In order to evaluate the statistical properties of a given ICT (i.e mean
value and standard deviation) it is necessary to reconstruct the orig-
inal ICT color for each trajectory element, i.e. for each correspond-
ing pixel in the image cube. For sub-pixel trajectories the size of
the ICT elements is by definition less than the pixel size. A correct
color reconstruction is not possible. To overcome this problem the
ICT analysis algorithm benefits from two facts. Firstly, the shape of
the trajectory is known from the image cube parameterization. This
information can be used to determine the overlapping areas for the
pixels of the corresponding ICT. Secondly, the ordering of trajecto-
ries in the image cube is known. This is useful for the reconstruction
of multiple overlapping trajectories. Note, that in general, the ICT
analysis is based on a front-to-back search strategy [7]. Success-
fully detected ICTs are excluded from subsequent analysis steps by
pixel wise masking in the image cube. For sub-pixel trajectories a
sub-pixel masking scheme is required.

In order to simplify the task of color reconstruction for a single
ICT element we have developed the accumulative color model illus-
trated in fig. 2 right. To differentiate between the color components
of multiple ICTs at a single image cube pixel position we introduce
index i = 0 . . . n − 1 with n as the total number of trajectories at
this position. Each ICT is considered to have a certain width. The
extension of an ICT within a pixel is simplified and modeled by the
weighting factor ki = 0 . . . 1 which is normalized to the pixel size.
The total pixel color rpix is considered to be generated from the
weighted sum of all ICT color parts rICT

i as

rpix = k0r
ICT
0 + k1r

ICT
1 + k2r

ICT
2 + . . . + kn−1r

ICT
n−1 (1)

with total weighting factor of
∑

i=0...n−1 ki = 1.
In practice, for ICT analysis the total number n of all ICTs con-

tributing to the final pixel color rpix is not known in advance. Fur-
ther, it is necessary to consider the influence of ICT self-occlusions
within the pixel. Therefore, for a successful detection algorithm it
is essential to use an occlusion compatible front-to-back search or-
dering to guarantee that in case of occlusions, rICT

i always occludes
rICT

i+1 (fully or partly). For an arbitrary analysis step i, all relevant
ICTs can be labeled according to their depth hierarchy and one can
define three groups of trajectories: The ICTs which are closer to the
camera, the ICT at the current position, and the ICTs which are fur-
ther away.

Assuming an error free front-to-back detection algorithm, the
first category of ICTs is known from the detection history. The idea
of this work is to introduce two pixel based accumulation buffers
for these elements. The first buffer bacc

i =
∑

j=0...i kmin
j rICT

j

contains the weighted sum of all successfully detected ICT color
components. The second buffer kacc

i =
∑

j=0...i kmin
j contains the

cumulative sum of the corresponding weighting factors. To guaran-
tee a maximum of kacc

n−1 ≤ 1 we introduce the corrected weighting
factor kmin

i = min(ki, (1− kacc
i−1)) with kmin

0 = kacc
0 = k0. This

condition is required to limit the maximal pixel area for multiple oc-
clusions to a normalized size of one. It ensures, that for an analysis
step j with j > i and kacc

i = 1 all kacc
j = 0. In other words, the

color contributions of all subsequent ICT components will be dis-
carded if the area of the pixel is already fully occupied from ICT
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Fig. 3. Influence of quantization error to ICT color reconstruction,
top) synthesized ICT bottom) reconstructed color (solid), mean
value and standard deviation (dashed).

components which are closer to the camera. Note, that the accumu-
lation of the weighting factors kmin

i can be interpreted as a sub-pixel
masking operation with kacc

i as being the sub-pixel masking buffer.
According to the three categories of trajectories mentioned

above we define the weighted ICT color component at the current
position (category two) as bICT

i = kmin
i rICT

i . Category three, the
color components of all subsequent analysis steps, are considered as
background. We define bBG

i as the weighted background color. The
final pixel color becomes

rpix = bacc
i−1 + bICT

i + bBG
i (2)

The ICT color for step i can be predicted by

rICT
i =

1

kmin
i

bICT
i =

1

kmin
i

(
rpix − bacc

i−1 − bBG
i

)
(3)

For the proposed front-to-back search algorithm, the weighted back-
ground color bBG

i is not known in advance. One way to overcome
this problem is to estimate bBG

i from the neighboring pixel color
rneigb

i . This solution is based on the assumption that the number of
ICT components n contributing to the final pixel color rpix is small,
i.e. the depth structure is rather homogeneous on sub-pixel level.
For this case exists a correlation between the current pixel and its
neighbor which can be used for the color estimation. In eq. (3), the
weighted background color component becomes

bBG
i =

(
1− (kmin

i + kacc
i−1)

)
rneigb

i (4)

Note, that this assumption cannot be guaranteed for all elements of a
point trajectory. Nevertheless, experiments have shown that in prac-
tice it still holds for most of the ICT elements. In this way, the tra-
jectory detection algorithm benefits from the fact that a large number
of samples (i.e. all available images of the sequence) are used to re-
construct the color of a single 3D point. False color reconstruction
results are handled as outliers in final statistical analysis of the ICT
color reconstruction algorithm.

4. INFLUENCE OF QUANTIZATION ERROR

The previous section highlighted the problem of spatial re-sampling.
In the following, the task of color re-sampling will be discussed.
Consider a continuous pixel color rpix which will be sampled to its

subpix-position
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Fig. 4. Reconstruction error for sample ICT in fig. 3 in dependency
left) of sub-pixel position, fixed color value (200), right) of ICT
color, fixed sub-pixel position.

discrete version r̂pix. The maximal quantization error for a single
color unit is given by Δq = ±1

2
. The maximal reconstruction error

emax for a given ICT pixel color r̂pix can be derived from eq. (3).

r̂ICT
i + emax =

1

kmin
i

((
r̂pix + Δq

)
− bacc

i−1 − bBG
i

)
(5)

Where r̂ICT
i denotes the reconstructed ICT color which was esti-

mated from the sampled pixel color. Note, that in order to reduce
complexity the quantization errors of the accumulation buffers bacc

i−1

and bBG
i are ignored. So, from eq.(5) the maximal ICT color recon-

struction error can be derived as

emax =
1

kmin
i

Δq (6)

In order to illustrate the influence of quantization error a linear
ICT was synthesized (fig. 3 top). The color of this ICT was recon-
structed for each of its elements based on the proposed algorithm.
Fig. 3 bottom shows the result of the reconstruction. It can be seen
that dependent on the ICT position the quantization error may cause
large deviations from the original ICT color value of 100. Further,
fig. 4 illustrates the dependency of quantization error from the pixel
weighting factor k (left-hand side) and from the color value (right-
hand side).

To overcome this problem, we introduce a threshold based ap-
proach. The idea is to estimate the maximal possible color recon-
struction error for each ICT element. This is possible because the
shape of the ICT is known. For each ICT element the correspond-
ing weighting factor kmin

i can be determined. A threshold is used
to mask ICT elements with large reconstruction error probabilities.
These elements are excluded from overall ICT color variation esti-
mation. In this way the robustness of the algorithm increases drasti-
cally.

5. EXPERIMENTAL RESULTS

To evaluate the efficiency of ICT color reconstruction the problem of
ICT detection was simplified in order to minimize the influence of
other distortions to the robustness of the reconstruction result (cam-
era parameter estimation errors, camera noise etc.). Therefore, we
have used a simple synthetic sequence with linear camera movement
(see fig. 5 left). The trajectory search was restricted to a certain re-
gion in the 3D scene which is illustrated in fig. 5 left (region A).
Note, that in the image cube this region is represented by the trajec-
tories with a given offset range s as illustrated in region B on the
right-hand side of the figure.

We have set up two test scenarios. Firstly, the efficiency of color
reconstruction was tested for the single trajectory t, illustrated in
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Fig. 5. Synthetic test sequence, left) sample image, right) trajectory
structure in image cube
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Fig. 6. Reconstructed color for trajectory t in fig. 5 right, B) pro-
posed algorithm, C) no quantization error handling, D) no back-
ground color prediction, E) without both methods

fig. 5 right. The ICT color reconstruction results are compared with
the original image colors. Fig. 6 shows the results for the proposed
algorithm using: B) both: quantization error threshold and back-
ground color prediction, C) only background color prediction, D)
only quantization error threshold, and E) just a simple color predic-
tion. In case B) the ICT color was reconstructed with high quality.
Both, the color prediction as well as the ICT color validation are
very robust. In contrast, cases C, D, E show rather poor results. Es-
pecially, the neglected handling of quantization error enlarges the
deviations from the original color drastically. The second test is il-
lustrated in fig. 7. A full search was performed within the stated
search region s (see fig. 5). Again, the four cases from the previous
test setup were applied. It can be seen, that only for the proposed
algorithm (case B), a reconstruction result with high accuracy can
be obtained. In contrast, neglecting the quantization error handling
(case C,E) as well as the background color prediction (case D,E)
leads to poor reconstruction results.

6. CONCLUSIONS

ICT analysis is a powerful and new approach for 3D reconstruction.
Previous work on this topic has shown that the estimation of over-
all trajectory color and the validation of its existence is still one of
the bottlenecks of the algorithm. This paper proposes a new robust
approach which overcomes this problem. It benefits from two as-
pects of the ICT analysis. Firstly, the trajectory shape and trajectory
occlusion ordering can be derived from the image cube parameter-
ization. Secondly, the parallel analysis on all available image data
provides a large number of data samples which increases the robust-
ness of the reconstruction result drastically. The proposed detection

D E

A B C

Fig. 7. Results for trajectory reconstruction, A) original image, B)
proposed algorithm, C) without quantization error estimation, D)
without background color prediction, E) without both methods

algorithm is based on an accumulative color prediction and masking
scheme which works in sub-pixel resolution. It incorporates neigh-
boring pixels as well as the reconstruction history in order to increase
robustness. An efficient handling of distortions caused by the color
quantization error further enhances the results. The robustness of the
algorithm was proved by several experiments.
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