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ABSTRACT
We present an approach for three dimensional (3D) shape
modeling using Jacobi polynomials based surface harmon-
ics. Because we construct a set of complete hemispherical
harmonic basis functions on a hemisphere domain from the
associated Jacobi polynomials, our shape modeling method
work efficiently on the open hemisphere-like objects that of-
ten exist in medical anatomical structures (e.g., ventricles,
atriums, etc.). We demonstrate the effectiveness of our ap-
proach through theoretic and experimental exploration of a
set of medical image applications.

Index Terms— Shape Modeling, Medical Image Com-
puting

1. INTRODUCTION

Three dimensional (3D) shape modeling are now playing an
important role in image processing with many applications,
such as medical image processing, molecular biology, bio-
chemistry, virtual reality, etc., and the number of them is in-
creasing greatly [1]. As one important application in image
processing, medical image analysis urgently requires efficient
and accurate shapemodelingmethods. In particular many dis-
eases resulting in or frommorphologic variations of structures
(e.g., heart, brain, etc.) shows the importance of analysis of
shape variability for diagnostic classification and understand-
ing of biomedical processes.
While there are multiple 3D modeling techniques, each

has its own advantages and drawbacks depending on the ap-
plication property. Mathematically the shape modeling meth-
ods include parametric models (such as harmonic functions
[2], hyperquadrics [3], medial axis (skeleton) [4], distance
distributions [5] and landmark theory based descriptors [6].
Because spherical harmonic descriptions are smooth, accu-
rate fine-scale shape representations with a sufficiently small
approximation error [7], they are widely studied and used in
medical image analysis [8]. Chen et al. [9] presented their
spherical harmonicmodel to analyze the left ventricular shape
and motion. Similarly, Edvardson and Smedby [10] viewed a
3D object as a radial distance function on the unit sphere and
tested their method on a data set from magnetic resonance

imaging (MRI) of the brain. Because they used the radial sur-
face function (r(θ, φ)) in all models, their methods are limited
to represent only star-shape or convex objects without holes.
In [2], Brechbühler, Gerig and Kübler presented an ex-

tended spherical harmonic (SPHARM) method to model any
simply connected 3D object. The key component of this method
is the mapping of surfaces of volumetric objects to parame-
trized surfaces prior to expansion into harmonics. SPHARM
method have been applied in many medical imaging applica-
tions, e.g., shape analysis of brain structures [7].
In this paper, we propose the novel hemispherical har-

monic shapemodelingmethod to meet the requirement of sur-
face reconstruction of hemisphere-like anatomical structures
in medical image computing. Our novel global parametric
shape modeling method is in the form of linear combination
of hemispherical harmonic Hm

l (θ, φ). The basis functions
Hm

l (θ, φ) derive from the shifted associated Jacobi polyno-
mials J

(α,β)
n (x) with proof of their orthogonality property.

The applications are vast in medical image computing such as
structures in cardiac MR image sequences [11]. Our method
performing on the left ventricular shape reconstruction is shown
in section 3.

2. METHODS

In this section, we first propose a set of new surface harmonics
based on Jacobi polynomials J (α,β)

n (x) and demonstrate their
orthogonal property. In order to more efficiently describe the
hemisphere-like objects, we then present the other set of new
hemispherical harmonics which also are based on the Jacobi
polynomials. At last, we describe our surface parametriza-
tion method that generates the hemispherical harmonic shape
modeling results.

2.1. Surface harmonics with Jacobi polynomials

The Jacobi polynomials J
(α,β)
n (x) are orthogonal on (−1, 1)

with weight function w(x) = (1 − x)α(1 + x)β . Their Ro-
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drigues’ formula is [12]

J (α,β)
n (x) =

(−1)n

2nn!

1

(1− x)α

1

(1 + x)β

dn

dxn
[(1− x)α+n(1 + x)β+n]. (1)

Here, we only use the case of α = 0 and β = 1:

J (0,1)
n (x) =

(−1)n

2nn!

1

(1 + x)

dn

dxn
[(1− x)n(1 + x)1+n]

=
(−1)n

2nn!

1

(1 + x)

dn

dxn
[(1− x2)n(1 + x)]. (2)

As an important property, Jacobi polynomials are orthog-
onal polynomials on (−1, 1) with weight function w(x) =
(1 + x) and satisfy [12]:

∫ 1

−1

J (0,1)
s (x)J

(0,1)
t (x)(1 + x)dx = 2δst,

where δst is the Kronecker delta.
The associated Jacobi polynomials are defined as:

Jm
l (x) = (1− x2)m/2 dm

dxm
J

(0,1)
l (x). (3)

Before we construct the surface harmonics by combination of
{Jm

l (cos θ)} (−l ≤ m ≤ l) with {cos(mφ), sin(mφ)}, we
must prove the orthogonality of associated Jacobi polynomi-
als Jm

l (x) for equalm and different l first. From Eq. (3), we
know:
∫ 1

−1

Jm
l (x)Jm

l′ (x)(1 + x)dx =

∫ 1

−1

(1 + x)(1 − x2)m

dm

dxm
J

(0,1)
l (x)

dm

dxm
J

(0,1)
l′ (x)dx. (4)

We can assumem ≤ l < l′. After defining

Pi =
di

dxi
[(1 + x)(1 − x2)m dm

dxm
J

(0,1)
l (x)], (5)

Qi =
dm−i

dxm−i
J

(0,1)
l′ (x), (6)

we can rewrite Eq. (3) as:
∫ 1

−1

Jm
l (x)Jm

l′ (x)(1 + x)dx =

∫ 1

−1

P0Q0dx.

Combining the Eq. (2) with one step integration, we have:
�

1

−1

J
m

l (x)Jm

l′ (x)(1 + x)dx = P0Q0|
1

−1 −

�
1

−1

P1Q1dx. (7)

From Eq. (5), we know Pi = (1 − x2)m−if(x), f(x) is a
polynomial with degree l − m + i. Thus, P1 = P−1 = 0

when i < m. In Eq. 7, the integration can be continued m

steps and the result is:
∫ 1

−1

Jm
l (x)Jm

l′ (x)(1 + x)dx = (−1)m

∫ 1

−1

PmJ
(0,1)
l′ (x)dx

= (−1)m

∫ 1

−1

(1 + x)g(x)J
(0,1)
l′ (x)dx (8)

where g(x) is a polynomial with degree l (we know that from
Eq. (5)). Because the Jacobi polynomials J (0,1)

l′ (x) is orthog-
onal to all polynomials g(x) with l < l′ under the weight
function w(x) = 1 + x [13], thus

∫ 1

−1

Jm
l (x)Jm

l′ (x)(1 + x)dx = 0 (9)

with l �= l′. Thus, associated Jacobi polynomials Jm
l (x) are

orthogonal for equalm and different l. We construct the sur-
face harmonic basis functions Um

l (θ, φ) as:
{

Um
l (θ, φ) = Jm

l (cos θ) sin(mφ), m ∈ [1, l]
U−m

l (θ, φ) = Jm
l (cos θ) cos(mφ), m ∈ [0, l]

(10)

with θ ∈ [0, π] and φ ∈ [0, 2π). Similar to previous spherical
harmonic shapemodelingmethod [2, 7], we also can use these
Jacobi polynomials based surface harmonic basis functions to
reconstruct the surface of object as:

v(θ, φ) ≈

L∑
l=0

l∑
m=−l

c
m
l Um

l (θ, φ). (11)

2.2. Hemispherical harmonics

When we define the hemispherical harmonics, we use the
shifted Jacobi polynomials [12] that are a set of functions
analogous to the Jacobi polynomials, but defined on the in-
terval [−1, 0]. For Jacobi polynomials J

(0,1)
l (x), we use the

linear transformation x = 2x′ + 1 to create the new polyno-
mials:

J̄
(0,1)
l (x′) = J

(0,1)
l (2x′ + 1). (12)

From [13], for orthogonal polynomials J
(0,1)
l (x), the lin-

ear transformation x = kx′ + h, k �= 0, carries over the in-
terval [a, b] into an interval [a′, b′] (or [b′, a′]), and the weight
functionw(x) intow(kx′+h). The polynomials (sgn k)l|k|

1

2

J
(0,1)
l (kx′ + h) are also orthogonal on the interval [a′, b′]
(or [b′, a′]) with the weight function w(kx′ + h). Because
x ∈ [−1, 1] in Jacobi polynomials J

(0,1)
l (x), J̄

(0,1)
l (x′) are

also orthogonal on the interval [−1, 0] with the weight func-
tion w(x′) = 2(1 + x′).
For the associated polynomials J̄m

l (x′), using the linear
transformation of x to 2x+1, we get shifted associated Jacobi
polynomials [12] over the interval x′ ∈ [−1, 1]:

J̄m
l (x′) = Jm

l (2x′ + 1), (13)
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and with respect to l,
∫ 0

−1

J̄m
l (x′)J̄m

l′ (x′)dx′ =

∫ 0

−1

Jm
l (2x′ + 1)Jm

l′ (2x′ + 1)dx′.

(14)
We get a set of orthogonal (combining Eq. (14) with Eq. (9))
associated polynomials J̄m

l (cos θ) that are defined in the in-
terval θ ∈ [π

2 , π]. Their relationship to associated Jacobi poly-
nomials is:

J̄l(cos θ) = Jl(2 cos θ + 1) on θ ∈ [
π

2
, π]. (15)

Based on our shifted associated Jacobi polynomials J̄m
l

(cos θ), we construct the Hemispherical harmonic basis func-
tionsHm

l (θ, φ) as:
{

Hm
l (θ, φ) = J̄m

l (cos θ) sin(mφ), m ∈ [1, l]
H−m

l (θ, φ) = J̄m
l (cos θ) cos(mφ), m ∈ [0, l]

(16)

with θ ∈ [π
2 , π] and φ ∈ [0, 2π). Since the shifted associ-

ated Jacobi polynomials are orthogonal, Hm
l (θ, φ) are also

orthogonal over [π
2 , π]× [0, 2π) with respect to both l andm.

2.3. Surface parametrization and description
In order to describe a voxel surface (figure 1(b)) using surface
harmonics we first need to create a continuous and uniform
mapping from the object surface (see figure 1(c)) to the sur-
face of a half unit sphere (see figure 1(d)) so that each ver-
tex on the object surface can be assigned a pair of spherical
coordinates (θ, φ) in figure 1(a). This process is called sur-
face parameterization, and the surface of the half unit sphere
becomes our parameter space. Brechbühler et al. [2] pro-
posed the spherical parameterization approach and we em-
ploy a hemispherical parameterization approach that is simi-
lar to their approach to exploit a square surface mesh.
The parameterization is constructed by creating a harmonic

map from the object surface to the parameter surface. For co-
latitude θ two poles are selected in the surface mesh by find-
ing the two vertices with the maximum (for the hemisphere-
like object, it should be the center of top slice which includes
many points with the same or close maximum z values, e.g.,
our parametrization for left ventricular surface) and minimum
z coordinate in object space. Then, a Laplace equation (Eq. (17))
with Dirichlet conditions (Eq. (18) and Eq. (19)) is solved for
colatitude θ:

∇2θ = 0 (except at the poles) (17)

θnorth =
π

2
(18)

θsouth = π (19)

Since our case is discrete, we can approximate Eq. (17) by
assuming that each vertex’s colatitude (except at the poles’)
equals the average of its neighbours’ colatitudes. Thus, after

assigning θnorth = π
2 to the north pole and θsouth = π to

the south pole, we can form a system of linear equations by
considering all the vertices and obtain the solution by solving
this linear system. For longitude φ the same approach can be
employed except that longitude is a cyclic parameter. To over-
come this problem, a “date line” is introduced. When crossing
the date line, longitude is incremented or decremented by 2π

depending on the crossing direction. After slightly modifying
the linear system according to the date line, the solution for
longitude φ can also be achieved.
The parameterization result is a bijectivemapping between

each vertex v = (x, y, z)T on a surface and a pair of spher-
ical coordinates (θ, φ) (θ ∈ [π

2 , π], φ ∈ [0, 2π)). We use
v(θ, φ) to denote such a mapping, meaning that, according
to the mapping, v is parameterized with the spherical coordi-
nates (θ, φ). Taking into consideration the x, y, and z coordi-
nates of v in object space, the mapping can be represented as
v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T .

We use the surface net representation to expand the sur-
face of object into our hemispherical harmonic basis functions
with the coefficients cm

l = (cm
lx, cm

ly , cm
lz )T . Figure 1(f) shows

the reconstructed surface result of voxel object in figure 1(b).

3. RESULTS

We apply our hemispherical harmonic surfacemodelingmethod
to medical image analysis applications. Based on segmented
image data of medical anatomical structures, we use the hemi-
spherical harmonic method explained above for shape recon-
struction and our novel shape description allows researchers
to perform further shape analysis or classification and access
more functional details.
During cardiac shape analysis study, since the ventricles

and atriums are open objects, people only need the surface de-
scriptions without the top parts. But the traditional spherical
harmonics methods work only for closed surface. Thus, the
closed shape descriptions introduce errors into shape analysis
and classification for cardiac shape studies. In order to solve
this problem, we apply our hemispherical harmonic surface
modeling method to such objects. The surface of open ob-
jects are well reconstructed and the reconstruction result is
shown in figure 1(f). Figure 1 also shows the surface model-
ing process, including surface parametrization, mapping, and
reconstruction.
Without the top parts, these non-closed shape descriptors

are more accurate in the left ventricular shape representation
than the closed description method. They can provide more
functional shape information for cardiac shape analysis.

4. CONCLUSIONS

In this paper, we have presented a novel shapemodelingmethod
for the requirement of surface reconstruction for hemisphere-
like anatomical structures. In order to propose the new shape
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(θ,φ)

(a) Spherical coordinates (b) Voxel object

(c) Object surface with parame-
trization mapping

(d) Hemisphere used in parametriza-
tion mapping

(e) Reconstructed surface with
parametrization mesh

(f) Final reconstructed surface

Fig. 1. Surface parametrization and reconstruction. (a) shows
the spherical coordinates (θ, φ); (b) shows the voxel surface
of left ventricle before surface reconstruction; (c) and (d)
show the parametrization mapping from the object surface (c)
to the surface of a half unit sphere (d); (e) shows the recon-
structed surfaces of left ventricle with parametrization mesh;
(f) shows the final reconstructed result.

descriptors, we use a set of new orthogonal associated Jacobi
polynomials Jm

l (x) to generate the orthogonal hemispherical
harmonics Hm

l (θ, φ). The hemispherical harmonics are de-
fined on a hemisphere domain and we map the surfaces of
volumetric objects to parametrized surfaces prior to expan-
sion into hemispherical harmonics. The success of the algo-
rithm is in its modeling to represent the open shape. The sur-
face reconstruction results of using segmented cardiac MRI
clearly demonstrate the effectiveness of our shape modeling
method.
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