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ABSTRACT

Video based rendering algorithms attempt to render videos of

a scene from an arbitrary viewpoint, given a set of input video

sequences taken from several fixed viewpoints. These algo-

rithms require either a dense camera array or some knowledge

of scene structure. By applying sequential Markov Chain

Monte Carlo (MCMC) methods, we show it is possible to

estimate the surfaces visible within a scene, and track them

over time, in an efficient manner. Initially, a particle filter is

applied across image scale to estimate the surfaces present in

a scene at a fixed point in time. Following this, surfaces are

tracked over time using a particle filter which takes advantage

of both frame-to-frame dependancies, and a hierarchical sur-

face model derived from a multiresolution Gaussian mixture

model analysis of the surface data. This time-varying surface

model, and the images, are the input for a rendering algorithm

which uses a fuzzy z-buffer and projective texturing to gener-

ate reconstructions.

Index Terms— Rendering, Monte Carlo methods, Track-

ing filters, Gaussian mixture models.

1. INTRODUCTION

Image based rendering algorithms synthesise images of a scene

from an arbitrary viewpoint, given a finite number of real im-

ages of the scene as input. The scene geometry must be taken

into account (either explicitly, e.g. [3] or implicitly, e.g. [2])

to produce realistic renderings, unless the number of input

images is very large (e.g. [6]). A logical extension of im-

age based rendering is video based rendering [12], [4]. Video

based rendering algorithms also typically require some esti-

mate of the scene geometry, but in the case of video based

rendering, these estimates will change over time as objects

move within the scene.

Existing attempts to represent scene geometry typically

use voxels [11], or a wireframe mesh [9]. Voxels provide a

low-level representation of the surfaces, and are constrained

by their resolution. In addition it is difficult to estimate voxels

for concave objects. Mesh representations of surfaces neces-

sarily make assumptions about the number and topology of

objects within a scene. The solution proposed in [8] is to use

a ‘patch’ based representation which assumes that surfaces

within a scene are locally smooth. By estimating the position

and orientation of a set of surface elements, the scene geom-

etry is captured in a general, easily estimated way.

In this paper extend our previous results to show how sur-

faces are tracked over time to allow for dynamic as well as

static rendering. This is followed by a description of the ren-

dering algorithm, and some example renderings using a real

data set. The paper concludes with a discussion of the poten-

tial of our methods.

2. ALGORITHM OVERVIEW

The algorithm for estimating surfaces consists of four main

components.

I Surface patches are estimated at time t = 0 using a

multiresolution particle filter (Section 3, or for details

see [8]).

II Surface patches are clustered to form a multiresolution

Gaussian mixture hierarchy using MCMC (Section 4).

III The hierarchy of surfaces patches is tracked from frame

to frame using sequential MCMC methods (Section 5).

IV The resulting surface estimates and the original images

are used to render, in real-time, a sequence from an ar-

bitrary viewpoint (Section 6).

3. STATIC SURFACE PATCH ESTIMATION

Given a set of input images of a scene, the initial aim is to cre-

ate a set of ‘patches’ which describe the visible surfaces. This

is performed by partitioning each input image into blocks, and

assuming that each of these blocks corresponds to some pla-

nar quadrilateral in 3-D space. The position and orientation of

these quadrilaterals is then estimated, using a multiresolution

particle filter [8]. The output of this algorithm, is a vector for

each patch m, composed of its centroid, pm, and normal nm,

xm =
[

pm

nm

]
. (1)
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Once the initial surface estimation has taken place, it is simply

updated as new frames of the multiple video sequences arrive.

4. HIERARCHICAL CLUSTERING

Tracking the motion of every patch independently is a com-

putationally expensive task. To simplify the tracking a hi-

erarchical Gaussian Mixture Model (GMM) of the scene is

constructed, so that related patches can be tracked as a group

rather than individually. Each vertex in the tree represents the

data in the corresponding subtree. Coarse motion estimates

on high level models of the data may then be sequentially

propagated down the hierarchy.

This greatly simplifies the motion estimation, whilst al-

lowing the number of degrees of freedom of motion to be

controlled by estimating for the appropriate scales.

The set of these vectors, xj ∈ X , is modelled as a mixture

of K Gaussians

xm ∼
K∑

i=1

πiN(μi, Σi) (2)

where N(μ,Σ) is an unconstrained multivariate Normal dis-

tribution, πi is the weight, or probability, of a draw from the

ith component and is constrained such that

K∑
i=1

πi = 1 (3)

0 ≤ πi ≤ 1 i ∈ 1..K (4)

μi is the mean and Σi the covariance of component i.
The number of components, K, is chosen to ensure that

the data can be modelled in a flexible way, to cater for non-

rigid, articulated motions whilst avoiding overfitting. For N
data points, K is typically set to K ≈ N/30.

The components are estimated using a Gibbs Sampling

process [7] run for a small number of iterations (approxi-

mately 200) due to the complexity of the model fitting. Half

the iterations are discarded as ‘burn-in’. Despite this the mod-

els constructed form a reasonable approximation to the data.

For computational simplicity we use conjugate priors for

the mixture [7]. Although these have their limitations we

have found them adequate in this application. The prior for

π is modelled using a Dirichlet distribution, the mean of each

component a normal distribution, and the covariance a Wishart

distribution.

The aim of the GMM process is to form a coarse model

of the data, so it is desirable that the prior represents the ap-

proximate distribution of data points. To achieve this K data

points are chosen at random to act as seed points. Each seed

point, k, provides a prior on the mean of the kth component,

with the variance modelled by a symmetric Wishart distribu-

tion Wk = wI where w is a scale parameter. The Dirichlet

parameter is set to a constant indicating that the components

are expected to have an equal number of sample points each.

The initial clusters are generated by assigning each data

point xi to the closest seed point. It is also possible to assign

components randomly, but this results in numerical difficul-

ties and requires more iterations for similar results.

The estimation of multiresolution Gaussian Mixtures has

been previously discussed in [10]. However, the method of

construction is top-down which is inappropriate due to diffi-

culties with choosing the number and nature of splits at coarse

scales. Instead we adopt the following bottom-up approach.

At the finest scale are the original data points X . Let this

be level 0 of the hierarchy X0 and generate a mixture model

as described above:

M0 = {π0,j , μ0,j , Σ0,j} (5)

where j ∈ 1..Ki. The data at scale (i + 1) are now described

in terms of the components of the model at scale i, Mi

Xi+1 = {μj |j ∈ 1..Ki} (6)

to which it is now possible to fit a further mixture model

Mi+1 using the Gibbs Sampling process, except that the seed

points are now drawn according to the component weights

πi,j rather than uniformly from the set of data points. Succes-

sive levels of the multiresolution structure are constructed in

this manner until the number of components has reduced to a

small number, usually 1.

5. DYNAMIC SURFACE PATCH ESTIMATION

The first step is to take the set of mixture model means for

each resolution of the GMM, and transform them into sets of

patch parameters from the original data set. This is done by

simply choosing the patch from the original data set, which is

closest to each component’s mean at that resolution:

X ′
i = {xm| arg min

xm

‖xm − μj‖, μj ∈ Xi}. (7)

As part of the Gibbs Sampling process, each component from

a given resolution of the GMM is associated with a compo-

nent from the next lowest resolution, which may be viewed

as its ‘parent’. By applying the same association to the newly

created multiresolution data sets X ′
0 . . .X ′

L, a multiresolu-

tion tree structure is formed. The tree structure will be de-

scribed using the function g(m), which will be taken to mean

the parent patch of patch m.

Motion estimates are then calculated, starting with the

coarsest patches, represented in the set X ′
L. The motion for

each patch m in this set, at time t, is parameterised as a 6-D

motion vector, with three translation components, and three

Euler rotation angles, ymt = (tx, ty, tz, θ, φ, ψ)T .
A particle filter [1] is used to estimate the motion for these

patches, as more image frames become available. The particle
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filter represents probability distributions as a set of samples,

with associated weights. So, the motion distribution for the

patch m at time t is represented as

Ymt = {y0
mt . . . yS

mt}, (8)

Wmt = {w0
mt . . . wS

mt}. (9)

As a new set of image frames Zt is recorded, the weights

are updated as

ws
mt = ws

m,t−1p(Zt|ys
mt) (10)

where p(Z|y) is the measurement likelihood, where the mea-

surement Z = {z1 . . . zZ} is the set of images taken at time

t from the set of cameras C = {c1 . . . cZ}. To calculate this

measurement likelihood, we first consider that if a patch m
originally corresponded to a P × P pixel block, its original

position and orientation xm define a P ×P set of points in 3-

D space, corresponding to each of the original pixels. These

points shall be denoted:

Pm = {p1 . . . pP×P }, (11)

and each has a corresponding colour associated with it from

the original image:

Lm = {l1 . . . lP×P }. (12)

We define the matrix Ty to be the transformation matrix im-

plied by the motion parameter y. If f(c, p) is the pixel to

which point p projects in camera c, then the likelihood may

be evaluated as

p(Z|y, m) = (13)

1
Z × P × P

Z∑
n=1

P×P∑
m=1

N(zn(f(cn, Tym.pm))− lm; 0, q)

for a given patch m. To improve the robustness of this like-

lihood measure, we may estimate not only the likelihood for

the patch we are estimating, m, but also some subset of its

children T assuming that they undergo the same rigid motion.

Thus, the final likelihood is

p(Z|y) = |T |−1
∑
m∈T

p(Z|y, m) (14)

The samples and weights now form an estimate of the

posterior distribution p(ym|zt . . . z0). To form the prior dis-

tribution p(ym,t+1|ymt) for the next image frames, we as-

sume constant motion. Due to memory constraints, this is

implemeted by resampling the distribution assuming it to be

Gaussian, making this a Gaussian Particle Filter [5]. In other

words, if N(Ymt,Wmt) is the weighted normal distribution

for a given set of samples and weights at time t, then the new

samples are drawn as

ys
mt ∼ N(Ym,t−1,Wm,t−1), (15)

and the weights must be adjusted accordingly, before being

updated with (10).

w′s
m,t−1 = N(ys

mt; Ym,t−1,Wm,t−1). (16)

In summary, for each frame, the prior distribution of the

motion vector is updated to become the posterior motion dis-

tribution. In this iterative process, the posterior distribution

becomes the prior distribution for the next frame of video.

The motion for a patch m derived from a finer resolu-

tion of the GMM is estimated similarly, except that the prior

at each time step is a weighted combination of the previous

frame’s posterior distribution for this patch, and the parent

patch g(m)’s distribution for the current frame. The samples

for evaluation are drawn as

ys
mt ∼ αN(Ym,t−1,Wm,t−1)+βN(Yg(m),t,Wg(m),t) (17)

where α + β = 1.

6. RECONSTRUCTION

Reconstructions are generated by projecting a subset of the

original images onto the patch quadrilaterals generated by

blocks from those images. Fuzzy depth buffering is used to

smooth out inaccuracies in estimation, but this still retains a

sizeable portion of noise generated by poorly estimated ge-

ometry. Fortunately, the density of patches within a given

volume provides a strong cue as to which parts of the scene

contain real surfaces. Since the Gaussian Mixture Model is

implicitly estimating this density, we refine the reconstruc-

tion algorithm by filtering out reconstructed pixels that do not

fit the assigned mixture component well.

The quadrilateral corresponding to each patch m from

camera c is rendered by projecting image Ic onto the quadri-

lateral. For each pixel written it is possible to find the po-

sition x of the intersection between the ray emitted through

the pixel and the quadrilateral and the corresponding normal

n (which is constant for planar patches). The patch m is as-

signed to component km, and pixels with low likelihood are

thresholded out.

N ([x; n] |μkm , Σkm) < τ (18)

where τ is the threshold parameter.

7. RESULTS

Figure 7 shows a number of results for our natural ‘andy’

dataset. The sequence is approximately 60 frames long from

40 viewpoints. Each camera captures frames at 1024 × 768
and 30 frames per second. Whilst still demonstrating some

noticeable artefacts the reconstructions are of a reasonable

quality and the model fits the data well.
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(a) Original view of frame 0 (b) Original view of frame 40 (c) Original view of frame 80 (d) Synthesised novel view at

frame 0

(e) Model at frame 0 (f) Model at frame 40 (g) Model at frame 80 (h) Synthesised novel view at

frame 40

8. CONCLUSIONS

By choosing the right representation for the surfaces present

within a scene, we have shown that it is possible to easily

track the objects in a scene over time, and to render those

objects from an arbitrary viewpoint. Further work needs to

be carried out to compress the scene geometry estimates and

image data to create data sets of a manageable size.
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