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ABSTRACT

This paper analyzes the coding efficiency of distributed video cod-
ing (DVC) schemes that perform motion-compensated interpolation
at the decoder. The decoder has access only to the key frames when
generating the side information for intermediate frames. This fact
introduces a displacement estimation error that depends on several
factors: 1) the overall motion complexity; 2) the temporal coher-
ence of the motion field; 3) the temporal distance between succes-
sive key frames. Adopting a state-space model and a Kalman fil-
tering framework, we obtain an estimate of the displacement error
variance. This is used to determine the rate-distortion function of
the overall coding scheme, that takes into account both intra-coded
key frames and DVC-coded frames. The proposed model shows that
motion-compensated interpolation is unable to achieve the coding
efficiency of conventional motion-compensated predictive coding.

Index Terms— Video coding, motion analysis, distributed video
coding

1. INTRODUCTION

Distributed Video Coding (DVC) is a recent video coding paradigm
whose main idea is to perform intra-frame encoding and inter-frame
decoding. Results obtained on test video sequences reveal that DVC
coding schemes generally improve the coding efficiency with respect
to intra-frame coding, but, so far, they have been unable to achieve
the coding efficiency of conventional motion-compensated predic-
tive codecs, at least for the case of noise free transmission [1].

The goal of this paper is to introduce a model that allows to study
the coding efficiency of DVC-based coding schemes. We restrict our
analysis to schemes that compute the side information at the decoder
by performing motion-compensated interpolation, starting from two
intra-coded key frames [1]. Specifically, we focus only on the gener-
ation of the side information, neglecting other factors related to the
channel coding tools that are typically used to replace conventional
entropy coding. We elaborate our model in two steps. First, for each
Wyner-Ziv coded frame, we estimate the displacement error variance
introduced by motion-compensated interpolation. In fact, the true
motion field is not directly available at the decoder, and it must be
estimated introducing displacement estimation errors. Then, we es-
timate the power spectral density of the motion-compensated predic-
tion error to obtain the rate-distortion curves by inverse water-filling
[2]. Armed with the proposed model, we investigate the trade-offs
between motion-compensated interpolation accuracy and GOP size,
in order to find the optimal GOP size for a target distortion.

This paper extends our previous work in [3] in two ways: arbi-
trary GOP lengths are considered and the analysis is not restricted

to high rates, thus including the effect of lossy key frames. In addi-
tion, experimental results on real video sequences are presented to
corroborate the validity of the proposed model. A similar work ap-
peared in [4], where the model explicitly addresses only the case of
motion-extrapolation.

2. RATE-DISTORTION MODEL

Consider a GOP of size N frames, encoded either using a conven-
tional motion-compensated predictive codec or a DVC-based scheme
as in [1]. These schemes differ in the way the motion-compensated
prediction (side information) ŝ(t) of the current frame s(t) is gener-
ated:

• Motion estimation at the encoder: ŝ(t) = ŝP (t) is obtained
by exploiting data from the current frame s(t) and from the
previously encoded frames s′(t− 1) (s′ is the quantized ver-
sion of s). An I−P −P − . . .−I GOP structure is assumed.

• Motion-compensated interpolation at the decoder: ŝ(t) =
ŝWZ(t) is generated at the decoder side. The current frame
is not available. The decoder performs motion interpolation
using lossy coded key frames s′(τ1) and s′(τ2) only (τ1 <
t < τ2) [5][6]. An I−WZ−WZ− . . .−I GOP is adopted,
where the decoding of any Wyner-Ziv (WZ) frame requires
both the previous and the next I frames to be decoded first.

If we constrain the distortion D to be constant along the GOP,
the average rate R per frame can be computed as:

R(D) =
1

N

[
RI(D) +

N−1∑
i=1

R
{P,WZ}
i (D)

]
, (1)

where RI(D) is the contribution of the intra-coded frame and

R
{P,WZ}
i (D) that of the ith inter-coded frame (for the case

of motion-compensated prediction at the encoder or motion-
compensated interpolation at the decoder).

The rate-distortion curve RI(D) is given by the following para-
metric set of equations [7]:

DI(θ) = E[(s′ − s)2] =
1

4π2

∫∫
Λ

min[θ, φss(Λ)]dΛ (2)

RI(θ) =
1

8π2

∫∫
Λ

max

[
0, log2

φss(Λ)

θ

]
dΛ bit, (3)

where φss(Λ) (Λ = (ωx, ωy)) is the spatial power spectral density
(PSD) of the source and θ > 0 is a real-valued parameter that allows
to move along the rate-distortion curve. The latter is proportional to
the amount of distortion introduced by quantization.
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In the following, we derive the curves R{P,WZ}(D) adopting
the framework introduced in [2]. To this end, let us denote the resid-
ual frame after motion-compensated prediction as e(t) = s(t)− ŝ(t)
and define the spatial power spectral density of e(t) as φee(Λ) . Let
us consider a video signal that is described by a constant, transla-
tory displacement (dx, dy), and neglect any other effect like rota-
tion, zoom, occlusions, illumination changes, etc. The approximate
expression of φee(Λ) is given by [2]

φee(Λ) ≈
{

φss(Λ) if φss(Λ) < θ

max{φ̃ee(Λ), θ} otherwise
,

φ̃ee(Λ) = 2φss(Λ)(1− e
− 1

2 (ωxσ2
Δdx

+ωyσ2
Δdy

)
) + θ, (4)

where σ2
Δdc

denotes the variance of the displacement error Δdc =

dc − d̂c (c = x, y), which is assumed to be zero mean and Gaus-
sian distributed. The error is strictly connected to the way motion is
estimated and represented, as it will be detailed shortly.

In [2], an approximation of the rate-distortion function is given
by

D{P,WZ}(θ) = E[(e′−e)2] =
1

4π2

∫∫
Λ

min[θ, φss(Λ))]dΛ (5)

R{P,WZ}(θ) =
1

8π2

∫∫
Λ:(φss(Λ)>θ and φ̃ee(Λ)>θ)

log2

φ̃ee(Λ)

θ
dΛ

(6)
We can observe that, in order to compute equation (1), we need

to characterize the values of the displacement error variances σ2
Δdx

and σ2
Δdy

for each frame in the GOP. Assuming isotropic displace-

ment errors, we can state that, on average, σ2
Δdx

= σ2
Δdy

= σ2
Δd.

Therefore we will drop the coordinate index x, y in the rest of this
paper. We can analyze the following two cases:

• P frames: The motion estimation is performed at the encoder.
We can assume that the displacement error is solely due to
the finite accuracy used to represent motion vectors (M =
1, 1/2, 1/4, . . . pixels). Therefore, we can write σ2

Δd = M2/12
for any frame in the GOP as indicated in [2].

• WZ frames: The motion estimation is performed at the de-
coder between successive intra-coded key frames. Then, this
is used to infer the motion for intermediate WZ frames. In
order to evaluate σ2

Δdi
for the ith frame we propose a model

based on Kalman filtering, detailed in the following section.

3. STATE-SPACE MOTION MODEL

In this section, we introduce a state-space model according to the
Kalman filtering framework. We describe the time evolution of the
true displacements with the state equation, and the noisy observation
of the motion between two intra-coded key frames with the output
equation.

Specifically, we introduce the following state equation

d(t) = ρd(t− 1) + z(t) (7)

where d(t) is the true displacement that the frame s(t) is subject to, ρ
is the temporal correlation coefficient and z(t) ia a zero-mean white
noise, having variance σ2

z . The variance of d(t) can be computed as
σ2

d = σ2
z/(1−ρ2). In order to gain an insight, we can interpret σ2

d as
an indication of the motion complexity; a high value of σ2

d suggests
that large displacements are expected. On the other hand, ρ measures
the temporal coherence of the motion field, for a given value of σ2

d.

s(τ − 1 + k1)s(τ − 2 + k2) s(τ − 1) s(τ − 1 + k2) s(τ )

d(τ)d(τ − 1 + k2)

d(τ − 1 + k1)

d(τ − 1)

ττ − 1 + k2τ − 1 + k1τ − 1τ − 2 + k2

o(τ)

Fig. 1. Motion-compensated interpolation with time step τ referred
to the evolution of the intra-coded key frames

A value of ρ close to one indicates that motion has approximately
uniform velocity along time.

In the proposed model, we can view the motion-compensated
interpolation process as an estimation of the displacements at time

t, t−1, . . . , t−N +1 (i.e. d̂(t), d̂(t−1), . . . , d̂(t−N +1)), when
only the motion o(t) between two key frames is observed.

o(t) = d(t)+d(t−1)+d(t−2)+ . . .+d(t−N +1)+w(t) (8)

where w(t) is a white noise WN(0, σ2
w) that takes into account the

finite accuracy of displacements (σ2
w = M2/12), as already ex-

plained for P frames in the previous section.
The state-space model described by equation (7) and (8), implies

that a new observation o(t) is available at any time instant t. Actu-
ally, we have access only to one observation every N time instants,
where N is the GOP size. A more accurate model for the problem
at hand is obtained by relating the increment of the time variable to
intra-frames only. With a change of variables, we define τ = t/N
and we rewrite the state-space model in the new time units τ .

For the sake of simplicity, consider a GOP of N = 3 frames
(see Figure 1). At time τ the intra-frames s(τ) and s(τ − 1) are
used to compute the displacement o(τ). WZ frames are defined at
intermediate fractional times τ −1+k1 and τ −1+k2 (ki = i/N ).
Exploiting the autoregressive model (7) and denoting di(τ) = d(τ−
1+ki) and zi(τ) = z(τ − 1+ki) we obtain the subsequent model:

d1(τ) = ρd(τ − 1) + z1(τ) (9)

d2(τ) = ρ2d(τ − 1) + ρz1(τ) + z2(τ)

d(τ) = ρ3d(τ − 1) + ρ2z1(τ) + ρz2(τ) + z(τ)

o(τ) = d1(τ) + d2(τ) + d(τ) + w(τ)

that can be written in the canonical form prescribed by Kalman fil-
tering:

d(τ) = Fd(τ − 1) + v1(τ) (10)

o(τ) = Hd(τ) + v2(τ) (11)

where d(τ) = [d1(τ), d2(τ), d(τ)]T , v1(τ) = [z1(τ), ρz1(τ) +
z2(τ), ρ2z1(τ) + ρz2(τ) + z(τ)]T , v2(τ) = w(τ).

For a GOP of size N , we can generalize the previous discussion
and we obtain the following matrices:

F(N×N) =

⎛
⎜⎜⎜⎝

ρ 0 · · · 0
ρ2 0 · · · 0
...

...
. . .

...

ρN 0 · · · 0

⎞
⎟⎟⎟⎠ (12)
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H(1×N) =
(

1 1 · · · 1
)

(13)

V2(1×1) = E[v2
2(τ)] = σ2

w (14)

V1(N×N) = E[v1(τ)v1(τ)T ] = (15)

σ2
z

⎛
⎜⎜⎜⎝

1 ρ · · · ρN−1

ρ ρ2 + 1 · · · ρN + ρN−2

...
...

. . .
...

ρN−1 ρN + ρN−2 · · · ∑N
i=1 ρ2(N−i)

⎞
⎟⎟⎟⎠

The matrix V12 is composed of zeros, because the noise terms v1(τ)
and v2(τ) are uncorrelated.

Going back to our original problem, we want to obtain the vari-
ances of the displacement errors σ2

Δdi
of the ith WZ frame in the

GOP. Let us consider d̂(τ |τ − 1), i.e. the estimation of the state
vector d(τ) computed at time τ with data available up to time τ −1.
Kalman theory states that it is possible to relate the variance of
the error on the state of the Kalman predictor (Δd(τ |τ − 1) =

d(τ) − d̂(τ |τ − 1)) at time τ with that at time τ − 1 via the RDE
(Riccati Differential Equation):

P (τ +1) = FP (τ)F T +V1−K(τ)(HP (τ)HT +V2)K
T

(16)

where P (τ) = E[Δd(τ |τ − 1)ΔdT (τ |τ − 1)] and the Kalman
gain K(τ) is defined as K(τ) = (FP (τ)HT +V12)(HP (τ)HT +
V2)

−1. When the observation at time τ is available, in addition
to those up to time τ − 1, the variance of the error on the state

(Δd(τ |τ) = d(τ) − d̂(τ |τ)) of the Kalman filter must be con-
sidered, instead of the one of the Kalman predictor:

E[Δd(τ |τ)ΔdT (τ |τ)] = (17)

Pfilt(τ) = P (τ)− P (τ)[HT [HP (τ)HT ] + V2]
−1HP (τ)

In (16), upon convergence, P (τ + 1) = P (τ) = P . Substituting
P into eq. (16), we obtain the ARE (Algebrical Riccati Equation)
and we solve by P . Values of the matrix Pfilt(τ) upon convergence
are obtained substituting P in eq. (17). Diagonal values of matrix
Pfilt correspond to the variances of the displacement errors σ2

Δdi
of

the WZ frames into the GOP. Intuitively, each σ2
Δdi

value represents
the displacement error between the true motion and the estimated
motion for the ith frame, which is needed to compute equation (4).
Then, the average rate can be computed according to equation (1).

4. EXPERIMENTAL RESULTS

In order to run the simulations with the proposed model, we need to
obtain realistic values of ρ and σ2

d for some test sequences. We per-
formed motion estimation with 1/4 pixel accuracy and we obtained
the parameters of the AR(1) model (7) that best fits the estimated
motion vectors along the motion trajectories.

Figure 2a-c depicts the rate-distortion curves obtained accord-
ing to equation (1), indicating the estimated parameters ρ and σ2

d of
the AR(1) model for the test sequences. The curves are calculated
according to the following steps:

1. Set the GOP size N , the motion estimation accuracy σ2
w, the

state-space parameters (σ2
d, ρ) and the spatial spectral density

function (ω0 = π/45 as suggested in [2].)

2. Obtain the displacement error variances σ2
Δdi

by computing
the trace of the matrix in equation (17).

3. For each value of θ:

• Compute RI(θ), DI(θ) for the first frame of the GOP
(intra-coded key frame) using equations (3) and (2).

• For each Wyner-Ziv frame i = 2, . . . , N

– Obtain the power spectral density of the prediction
error φ̃eei(Λ), given σ2

Δdi
and φss(Λ).

– Compute the rate-distortion point corresponding
to θ using equations (6) and (5)

• Compute the average rate-distortion point according to
equation (1).

Figure 2a-c shows that, based on the proposed model, motion-
compensated prediction at the encoder outperforms motion-compensated
interpolation at the decoder for the studied sequences. In fact, the
lack of the original frame when generating the side information in-
troduces a coding efficiency loss.

In addition, the optimal GOP size might depend on the target
distortion. At high bit-rates, shorter GOP sizes are usually preferred.
In fact, high frequencies are preserved, and accurate displacement
estimation is needed to reduce the energy of the prediction error.
In fact, as GOP size increases the displacement error variance also
increases, thus impairing the accuracy of displacement estimation.
Nevertheless, at low bit-rates, quantization filters out high frequen-
cies, therefore a higher displacement error variance can be tolerated.
This implies that the GOP size can be increased to reduce the number
of intra-coded key frames.

We can conclude that the optimal GOP size depends on the un-
derlying motion statistics. For sequences characterized by simple
and temporally coherent motion like Salesman, the proposed model
suggests that the optimal GOP size is between 4 and 8 frames. As
the motion complexity increases (σ2

d increases), and the motion tem-
poral coherence vanishes (ρ decreases), the optimal GOP size can be
as little as 2 frames (see Figure 2c). For sequences characterized
by very complex motion, it can also happen that pure intra-frame
coding (i.e. GOP size equal to 1) outperforms Wyner-Ziv coding.

In order to validate the proposed model, we obtained the rate-
distortion functions for the first 64 frames of some test sequences
(Salesman, Mother and Foreman) at QCIF resolution and 15fps (see
Figure 2d-f). The INTRA and INTER curves refer respectively to
H.263+ intra (I-I-I) and H.263+ inter (I-P-P, GOP size 32). For the
other curves, we adopted the motion-compensated interpolation al-
gorithm described in [8], where the minimum block size is set equal
to 16× 16.

In order to isolate the impact of the generation of the side in-
formation alone, we replaced Turbo coding with conventional DCT-
based intra-frame entropy coding of the prediction residuals as in
H.263+. Therefore, we are providing results for a pseudo DVC-
based coding architecture, where other design parameters that might
affect the coding efficiency (i.e. correlation channel estimation, stop-
ping criteria for Turbo decoding, encoder side rate-control) are ex-
plicitly singled out. In other words, the results provided can be inter-
preted as upper bounds that can be achieved if channel coding tools
match the same performance of conventional entropy coding, when
the formers are used for source coding.

By comparing the top and the bottom rows of Figure 2 we no-
tice that coding efficiency of motion-compensated interpolation at
the decoder falls in-between intra and inter-frame coding. Some-
times, it also falls below the intra-frame coding curve for long GOP
sizes and sequences characterized by complex motion. Neverthe-
less, the coding efficiency of inter-frame coding is never achieved,
suggesting that the lack of the current frame when generating the
side information introduces a significant coding efficiency loss with

III - 3



0 0.5 1 1.5
5

10

15

20

25

30

35
ρ = 0.71 σd

2 = 0.08

Rate (bit/sample)

S
N

R
 (d

B
)

GOPsz = 2
GOPsz = 4
GOPsz = 8
GOPsz = 16
GOPsz = 32
INTRA
INTER

a)

0 0.5 1 1.5
5

10

15

20

25

30

35
ρ = 0.65 σd

2 = 0.19

Rate (bit/sample)
S

N
R

 (d
B

)

GOPsz = 2
GOPsz = 4
GOPsz = 8
GOPsz = 16
GOPsz = 32
INTRA
INTER

b)

0 0.5 1 1.5
5

10

15

20

25

30

35
ρ = 0.48 σd

2 = 0.54

Rate (bit/sample)

S
N

R
 (d

B
)

GOPsz = 2
GOPsz = 4
GOPsz = 8
GOPsz = 16
GOPsz = 32
INTRA
INTER

c)

0 64 128 192 256 320 384 448 512 576
24

26

28

30

32

34

36

38

40
Salesman

Rate (Kbps)

P
S

N
R

 (d
B

)

GOPsz = 2
GOPsz = 4
GOPsz = 8
GOPsz = 16
GOPsz = 32
INTRA
INTER

d) Salesman

0 64 128 192 256 320 384 448 512 576
24

26

28

30

32

34

36

38

40
Mother

Rate (Kbps)

P
S

N
R

 (d
B

)

GOPsz = 2
GOPsz = 4
GOPsz = 8
GOPsz = 16
GOPsz = 32
INTRA
INTER

e) Mother

0 64 128 192 256 320 384 448 512 576
24

26

28

30

32

34

36

38

40
Foreman

Rate (Kbps)

P
S

N
R

 (d
B

)

GOPsz = 2
GOPsz = 4
GOPsz = 8
GOPsz = 16
GOPsz = 32
INTRA
INTER

f) Foreman

Fig. 2. (a-c) Rate-distortion curves obtained with the proposed model. Each plot indicates the values of ρ and σ2
d used to obtain the curves,

estimated for the test sequences Salesman, Mother and Foreman. (d-f) Rate-distortion curves obtained for the test sequences.

respect to conventional motion-compensated predictive coding. In
addition, the proposed model provides a quite accurate indication of
the optimal GOP size for each of the tested sequences (4 − 8 for
Salesman, 4 for Mother and 2 for Foreman). The difference between
different GOP sizes can be better appreciated at high bit-rates, as
suggested by the proposed model.

5. CONCLUSIONS

In this paper we propose a model that describes the rate-distortion
characteristic of DVC-based coding schemes that perform motion-
compensated interpolation at the decoder. Both the model simu-
lations and the experiments on real video sequences show that the
coding efficiency of inter-frame coding is not achieved. In addition,
the optimal GOP size depends on the sequence motion complexity,
typically ranging between 2 and 8 for the tested sequences.
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