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Abstract— Following recent works on the rate region of the
quadratic Gaussian two-terminal source coding problem and
limit-approaching code designs, this paper examines multitermi-
nal source coding of two correlated video sequences to save the
sum rate over independent coding. Specifically, the first video
sequence is coded by H.264 and used at the joint decoder to
facilitate Wyner-Ziv coding of the second video sequence. The
first I-frame of the right sequence is successively coded by
H.264 and Slepian-Wolf coding. An efficient stereo matching
algorithm based on loopy belief propagation is then adopted
at the decoder to produce pixel-level disparity maps between
the corresponding frames of the two decoded video sequences
on the fly. Based on the disparity maps, side information for
both motion vectors and motion-compensated residual frames of
the second sequence are generated at the decoder before Wyner-
Ziv encoding. Experimental results on stereo video sequences
using H.264, LDPC codes for Slepian-Wolf coding of the motion
vectors and scalar quantization in conjunction with LDPC codes
for Wyner-Ziv coding of the residual coefficients show savings in
terms of the sum-rate when compared to separate H.264 coding
at the same video quality.

Index terms: multiterminal video coding, stereo matching, H.264

standard.
I. INTRODUCTION

Multiterminal (MT) source coding [1] is gaining research

interest lately due to its potential applications in distributed

sensor networks and distributed multiview video coding. The-

oretical limit of MT source coding of jointly Gaussian sources

was given recently in [2] for the direct setting (with two

encoders) where the encoders directly observe the sources, and

in [3] for the indirect/CEO setting where the encoders observe

independently corrupted versions of the same source. Practical

MT code designs based on generalized coset codes were

provided by Pradhan and Ramchandran in [4]. In earlier works,

we proposed a framework for practical MT source coding

based on Slepian-Wolf coded quantization [5], which employs

the approach of vector quantization followed by Slepian-Wolf

coding (SWC) [6]. However, the code designs in [4], [5] are for

ideal Gaussian sources assuming a priori known correlation.

When dealing with practical (e.g., video) sources, correlation

modeling is one of the key issues in efficient MT video coding.

In this paper, we focus on MT video code design for two

correlated video sequences captured by calibrated cameras.

In general, effective coding of a single/monocular video

sequence necessitates exploitation of both spatial and tem-

poral redundancies within the sequence. H.264 [7] provides

the currently most efficient solution by using motion esti-

mation/compensation to strip off the temporal redundancy

between frames, the DCT of the resulting motion-compensated

residual frames for energy compaction and decorrelation, and

variable-length coding for compression.

For stereo video sequences synchronously captured by two

calibrated video cameras, the compression efficiency can be

further improved by exploiting the inter-sequence correlation

(as done in the MPEG-2 stereo video coding standard [8]) in

a joint encoding setup.

For MT video coding, although the encoders cannot com-

municate with each other, the 3D geometric information of

the cameras can still help to exploit the binocular correlation

between the stereo pair. Many works [9], [10], [11], [12],

[13] are done for multiview video coding using this idea.

Recently, Song et al. [14] designed a model-based coding

scheme that combines 3D geometry with distributed coding.

A further attempt to obtain pixel-level stereo correspondence

leads to stereo matching, which is a fundamental problem

in stereo vision, and has been extensively studied in the

past by many researchers (see [15] and references therein).

Assuming knowledge of the camera configurations, stereo

matching computes a disparity map from a stereo image pair. It

can be formulated as an optimization problem that minimizes

the image dissimilarity energy. Quantitative evaluations of

different stereo matching algorithms in terms of bad pixel per-

centage (available at http://cat.middlebury.edu/stereo) showed

that the BP based algorithm [15] is among the most efficient.

We describe in this paper an MT video coder that is

capable of outperforming separate H.264 coding of two stereo

video sequences. Our coder shares the basic structure of

Slepian-Wolf coded quantization [5] for direct MT source

coding of two Gaussian sources. Specifically, the left video

sequence is compressed by the left encoder using H.264 and

a reconstructed version is available at the joint decoder. Then,

the first I-frame of the right sequence is successively coded:

a low-quality version is generated by H.264 and sent to the

decoder to obtain a rough disparity map, which is used to

compress the refinement bit stream of the right I-frame using

SWC with the decoded left I-frame as side information. This

way, the low-quality version is thus refined, as well as the

disparity map between the I-frames. Using the disparity map

as a initial point-to-point correspondence for the remaining

P-frames of the right sequence, the joint decoder generates

side informations for both the motion vectors and the motion-

compensated residual frame by imposing an “identical motion

constraint” (which means the corresponding points in the left

and right scenes must have identical 3D motions). With side

information available at the decoder, we implement SWC

of the motion vectors via low-density parity-check (LDPC)

coding, and Wyner-Ziv coding (WZC) [17] of the motion-

compensated residual frames via Slepian-Wolf coded scalar

quantization.
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H.264 bitstream consists of header bits, motion vector bits,

and texture bits. In the low-rate regime, most the of the rate

budget is spent on the former two; and there is not much

room for further savings in the texture bits from WZC in

this scenario. In the high-rate regime, additional WZC of the

motion-compensated residual frames is a must, but it is more

challenging because the bad matching pixels in the disparity

map and motion field will introduce much more noise to

the side information of residual frame pixels than to that of

the motion vectors (which are generated at macroblock level

instead of pixel level). This paper presents results SWC of the

motion vector bits at low rate, and on WZC of the I-frame

and the residual P-frames at high rate. These results indicate

savings in terms of the sum-rate when compared to separate

H.264 coding at the same video quality.

II. MT VIDEO CODING
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Fig. 1. Multiterminal video encoder-decoder (right I-frame).

Our proposed MT video coding scheme is depicted in

Fig. 1 (right I-frame) and Fig. 2 (right P-frame). Let L =
{L1, L2, ..., Ln} and R = {R1, R2, ..., Rn} be the left and

right stereo video sequences, respectively. First, the left se-

quence L is compressed at Encoder 1 by H.264 and transmitted

to the joint decoder, using a transmission rate of RL bits per

second (bps). Assume that only the first frame L1 is intra-

coded I-frame and all the other frames L2, ..., Ln are inter-

coded P-frames. Then the first frame R1 of right sequence

is intra-coded using a large quantization parameter (QP) to

produce a low-quality reconstruction Rd
1 at the decoder. A

rough disparity map D̃1 between Rd
1 and the decoded left

I-frame LD
1 is generated, and is used to produce a side

information Rw
1 by warping LD

1 . Now the encoder re-quantizes

the residual I-frame using a small QP, and the refining lower

bitplanes are compressed by SWC with the syndromes sent

to the decoder. Using both the side information Rw
1 and

the decoded higher bitplanes (from H.264), the refinement

bitplanes are decoded and hence the final decoded I-frame RD
1

and disparity D0 are generated. Denote R1
R as the bit rate (in

bps) that Encoder 2 spent on coding R1. The coded bitstream

for the k-th inter-coded frame Rk (k = 2, 3, ..., n) consists

of three parts, namely, the overhead bits OR
k , the motion

vector bits MR
k , and texture bits CR

k for the DCT coefficients.

We denote the reconstructed version of the left and right

sequences as LD = {LD
1 , ..., LD

n } and RD = {RD
1 , ..., RD

n },

respectively.

Before compressing Rk for k = 2, ..., n at Encoder 2, we

assume that the joint decoder has access to the reconstructions

{LD
1 , ..., LD

k−1, L
D
k } and {RD

1 , ..., RD
k−1}. We first employ

stereo matching to generate disparity map Dk−1 between LD
k−1

and RD
k−1. Using a slightly modified stereo matching algorithm

(by allowing vertical disparities), we also obtain a forward

motion field ML
k from LD

k−1 to LD
k . Then, assume that the

3D stereo camera settings are known, and follow the “identical

motion constraint” we apply a novel motion fusing algorithm

to produce the right forward motion field MR
k based on the

known information Dk−1 and ML
k . Clearly, the motion vectors

MR
k in the H.264 bitstream are correlated to the motion field

MR
k . Hence SWC can be employed to code MR

k with MR
k

as decoder side information.

Next, RD
k−1 is warped according to the right motion field

MR
k , generating an estimate RW

k of the k-th frame Rk. Now

the k-th disparity map Dk can be obtained from LD
k and

RW
k . Assume ideal Slepian-Wolf decoding, such that MR

k is

perfectly reconstructed at the decoder, then exactly the same

motion compensated frame RM
k at the encoder can be formed

by warping RD
k−1 according to MR

k . Consequently, the source
and the side information for WZC can be computed as

Xk = Rk − warp(RD
k−1,M

R
k ) = Rk − RM

k ; (1)

Yk = warp(LD
k ,Dk)−warp

(
RD

k−1,M
R
k

)
, (2)

respectively. Finally, WZC is employed to explore the remain-

ing correlation between Xk and Yk and and joint decoder re-

constructs RD = {RD
1 , RD

2 , ..., RD
n } using a total transmission

rate of RY =
∑n

i=1 Ri
Y bps.

III. I-FRAME COMPRESSION

The right I-frame is first intra-coded with QP = Pl.

The resulting H.264 bitstream is directly sent to the decoder,

and a rough disparity map D̃1 is generated by matching the

reconstructed right I-frame Rd
1 (QP = Pl) with LD

1 (QP =
Ph = Pl−6k). Denote the intra-predicted right I-frame as RP

1

(QP = Pl). Then the residual frame R1 −RP
1 is transformed

and re-quantized with QP = Ph. Since quantization step

size doubles for every increment of 6 in QP [7], all but the

lower k bitplanes of the re-quantized coefficients are already

transmitted by H.264. The rest k refinement bitplanes are com-

pressed by Slepian-Wolf Encoder using multilevel Slepian-

Wolf decoding [5] with side information Rw
1 = warp(LD

1 ,D̃1)
and the decoded higher bitplanes.

IV. MOTION FIELD ESTIMATION AND MOTION FUSION

Although originally designed for stereo matching, the BP

based algorithm [15], [16] can also be applied for motion field

estimation. Since most stereo cameras are aligned such that

no vertical disparity exists between corresponding pixels, the

algorithm in [15] only allows horizontal disparities, which are

clearly not enough for motion field. Hence we slightly modify

the above algorithm by allowing vertical disparities: all scalar

disparities ds become vector disparities ds; the Birchfield and

Tomasi’s pixel dissimilarity |F (s,ds, I)| [15] is changed to

F (s,ds, I) = min{d̄(s, s′, I)/σf , d̄(s′, s, I)/σf}, (3)

III - 26



Rk-1

Rk

Motion
Search

Motion
Compen-

sation

Rk

Slepian-Wolf
Encoding

Rk

Xk

D

+
Mk, Ok

M

Wyner-Ziv
Encoding

Bk
M,O Bk

X

R R

Lk-1

Lk

D Rk-1

Rk

Motion
Fusion

Stereo
Matching

Dk-1

Motion
Analysis

Mk
L

Forward
Warping

Mk
R

Motion
Compensation

Rk

D

D

W
E

+

Stereo
Matching

Dk

Forward
Warping

Dk

Slepian-Wolf
Decoding

Bk
M,OMk

R

Mk, Ok

Wyner-Ziv
Decoding

Bk
X

Yk

Xk
ˆ

Recon-
struction

Mk, Ok

Rk
D

R R

R R

ˆ ˆ

ˆ ˆ

Encoder Decoder

Fig. 2. Multiterminal video encoder-decoder (right P-frames).

where d̄(s, s′, I) = min{|IL(s) − IR(s′)|, |IL(s) −
I←R (s′)|, |IL(s)− I→R (s′)|, |IL(s)− I↑R(s′)|, |IL(s)− I↓R(s′)|},

s′ is the matching pixel of s with disparity ds, and

{I←R (s′), I→R (s′), I↑R(s′), I↓R(s′)} are the linearly interpolated

intensity halfway between s′ and its neighboring pixel to the

left, right, top and bottom, respectively, and σf is the image

noise variance that depends on the quality of input pictures.

The next step is to fuse the disparity map D and the left

motion field ML to estimate the right motion field MR. As

shown in Fig. 3 (b), the 3D motion vector can be decomposed

into three components: horizontal motion Vh that is parallel

to olor, vertical motion Vv that is perpendicular to the oolor

plane, and parallel motion Vp that is perpendicular to both

Vh and Vv (which is ignored in the motion fusion algorithm).

Denote F as the focal length of both cameras, B as the base

line distance olor between two cameras, S as the pixel size

in the imaging plane, and D as the convergence distance. The

stereo scene geometry is illustrated in Fig. 3 (a). The stereo

motion fusion algorithm has the following steps (see block

diagram in Fig. 3 (c)).

1) Estimating the depth. Calculate angles α and β using

the horizontal coordinate of the pixel s. Then the depth

of s is Hp = B/[(tan(α))−1 + (tan(β))−1].
2) Estimating the right horizontal motion vector vr

h =
V r

h rp/Rp based on the depth Hp and the left horizonal

motion vector vl
h = V l

hlp/Lp using (note that V l
h = V r

h )

vr
h

vl
h

=
rpLp

lpRp
=

sin(α + θ
2 ) sin(β)

sin(β + θ
2 ) sin(α)

. (4)

3) Estimating the right vertical motion vector using

vr
v

vl
v

=
vr

h

vl
h

=
sin(α + θ

2 ) sin(β)
sin(β + θ

2 ) sin(α)
. (5)

V. SWC OF MOTION VECTORS AND WZC OF RESIDUAL

COEFFICIENTS

In SWC of MR
k and WZC of Xk based on the decoder side

informations MR
k and Yk, respectively, the key requirement

is the correlation model. However, unlike ideal sources (e.g.,

i.i.d. jointly Gaussian), this correlation is not available a priori.
As in other works on distributed video coding in the literature

(e.g., [18]), we collect joint statistics from training video

sequences between each source-side information pair to build

a generic correlation model.

Then the Wyner-Ziv encoder quantizes Xk using scalar

quantization. The resulting quantization levels and the motion
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Fig. 3. Stereo motion fusion (a) 3D geometry; (b) motion decomposition;
(c) block diagram.

vectors MR
k are then coded by two separate Slepian-Wolf en-

coders, which send the syndrome bits for each bit-plane of the

two sources. Finally, the joint decoder uses the syndrome bits

and the log-likelihood ratios (computed using the correlation

model and the side information) to reconstruct X̂k and M̂R
k .

Detailed encoding/decoding algorithms can be found in [5].

VI. SIMULATION RESULTS

In our simulations, we use the Y-component of the 720 ×
288 “tunnel” stereo video sequences. Both the left and right

sequences are coded by H.264 standard, coding parameters and

the statistics of the resulting bitstream for both the low-rate

case and the high-rate case are given in Table I.
TABLE I

H.264 COMPRESSION PARAMETERS AND STATISTICS.

Parameters Low-rate regime High-rate regime
QP I frame 35 22
QP P frame 33 20
Total frames 20 20

Inter-search mode 16×16,16×8,8×16 16×16,16×8,8×16
Motion precision quarter-pel quarter-pel

Statistics Low-rate regime High-rate regime
Bit rate 866.3 Kbps 6.630 Mbps

Average SNR 31.15 dB 40.59 dB

The disparity maps and motion fields are generated in

half-pel precision by the modified stereo matching algorithm

described in Section IV. The parameter values are consistent

with those in [15]: ed = 0.01, σd = 8, ep = 0.05, σp = 0.6.

We also incorporate segmentation results produced by the

mean-shift algorithm [19].

In low-rate case, only the motion vectors for the inter-coded

blocks are Slepian-Wolf coded based on the side information
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generated at the decoder. Using the joint statistics collected

from all 20 frames of “tunnel” sequence as generic correlation

model, and a multilevel Slepian-Wolf code implemented by

LDPC codes, we are able to save 3,747 bits from the 38,970

motion vector bits in the right bitstream. All the other compo-

nents are directly transmitted to the decoder. Figs. 4 compare

the rate-distortion performance for separate encoding, MT

coding, and joint encoding of “tunnel” stereo video sequences,

where in the joint encoding case we interleave the left and right

stereo video sequences and use H.264 to code the interleaved

sequence with two reference frames in motion estimation, to

generate a benchmark for MT video coding.

In high-rate case, we implement the algorithms described

in Section III for the I-frame (with Pl = 34 and Ph = 22)

and in Section IV for the residual coefficients of the P-

frames. Generic correlation models between the sources and

the side informations are generated based on the joint statistics

collected from all 20 frames of “tunnel” sequence. Scalar

quantization followed by LDPC code based multilevel Slepian-

Wolf codes are employed for Wyner-Ziv coding. The total

saving is 32,548 bits, which is equivalent to 48.8 Kbps, or

0.75% of the total bit rate. Again, a performance comparison

among separate encoding, MT coding, and joint encoding is

shown in Fig. 5.
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Fig. 4. Comparison between separate H.264 encoding, MT coding, and joint
encoding (with same PSNR = 31.15 dB).

However, compared to separate H.264 compression, the

computational complexity of our scheme is higher, and most of

the computation time is spent on the stereo matching algorithm

(which takes around 40 minutes per frame on a Pentium IV

2.0GHz PC).

VII. CONCLUSION

In this paper, we addressed MT video coding that tar-

gets at saving the sum rate over separate monocular video

compressions with H.264. The main idea is to explore the

binocular redundancy by using disparity maps generated by

stereo matching to form side informations in WZC. Results

on rate savings for motion vectors in the low-rate regime and

for I-frame and residual coefficients in the high-rate regime

are given.
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