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ABSTRACT
In this paper, we propose a new method to perform the first

derivative estimation of a discrete intensity distribution. This

approach is based on a non-additive aggregation process and

provides an estimate of the gradient as intervals instead of sin-

gle values. These intervals are used to threshold a gradient-

based edge detection and therefore discard spurious detec-

tions due to noise.

Index Terms— Edge detection, Choquet integral, capac-

ity, summative and non-summative kernels, possibility, fuzzy

numbers.

1. INTRODUCTION

Edges in images are areas with strong intensity contrasts. Gra-

dient based edge detection consists of detecting maxima and

minima in the image first derivative. However, edges are not

the only features maximizing (or minimizing) this first deriva-

tive. Acquisition (or reconstruction) noise, digitalization and

spurious local textures induce undesirable discontinuities in

the intensity function.

Computation of the first derivative, in digital images, relies on

the concept of fitting a continuous surface locally to the data.

One of the most advanced approaches makes use of summa-

tive kernels whose role is to define a weighted neighborhood

of each sampled location. This neighborhood provides an in-

terplay between continuous and discrete. It also aims at using

a hypothesized ergodicity to reduce the effect of random noise

by providing regularization in the interpolation process.

Noise reduction and edge detection lead to antagonist criteria.

The Canny operator was designed to be an optimal edge de-

tector according to particular criteria. However there are other

detectors around that also claim to be optimal with respect to

slightly different criteria.

Estimation of the derivative of the continuous signal s result-

ing from the interpolation of discrete signal S via the summa-

tive kernel κ can easily be obtained by convolving S with the

first derivative dκ of kernel κ. Most of the usual approaches

lead to a derivative kernel that can be obtained by subtracting

two usual kernels:

dκ(x) = η+(x + εx)− η−(x− εx). (1)

Even when a supposed optimal filter is used, noisy images

produce spurious discontinuities that have to be removed by

a tracking process involving an arbitrary threshold depending

on the image noise. The threshold arbitrariness reduces the

detection robustness. Indeed, the edge detection highly relies

on the appropriateness of the hypothesized optimal thresh-

old, especially with tomographic reconstructed images whose

noise is usually assumed to be Poisson distributed and there-

fore not uniform on the whole image the detection robustness.

In this paper, we present a method producing a natural thresh-

old estimation, depending on local noise level, at each sam-

pled location. The underlying idea of this work is the fol-

lowing: when estimating a piece of information from a set

of noisy data with a kernel-based approach, variations due to

measurement errors can be estimated by slightly varying the

shape (but not the size) of the kernel. Such a variation can

be simply achieved by replacing the conventional summative

kernel approach by a non-summative kernel approach. We

come up to a gradient estimator that produces intervals in-

stead of single values. The length of each interval is highly

correlated with the local noise level. A location is declared

not being an edge if the value 0 belongs to the estimated in-

terval.

2. SUMMATIVE AND NON-SUMMATIVE KERNEL

Summative or non-summative kernels are functions that can

be thought as weighted neighborhoods.

Summative kernels are IR-valued functions κ defined on

a domain Ω, satisfying the summative normalization property∫
Ω

κ(ω)dω = 1. (2)

In image processing they are usually positive and unimodal

as in the rest of this paper. Positivity implies that they can

be seen as probability density functions, with whom we can

associate, for any A ⊆ Ω, a probability measure Pκ(A) =∫
A

κ(ω)dω.

Estimation of a given signal S in a given summative or

probabilistic neighborhood κ is the expectation of this signal

according to κ. That is:

Eκ(S) =
∫

Ω

SdPκ =
∫

Ω

S(ω)κ(ω)dω. (3)

Non-summative kernels are [0, 1]-valued functions π de-

fined on a domain Ω, satisfying the maximitive normalization
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property

max
ω∈Ω

π(ω) = 1. (4)

They can be seen as possibility distribution functions [1], with

whom we can associate, for any A ⊆ Ω, a possibility measure

Ππ(A) = supω∈A π(ω). A possibility measure is a special

case of concave Choquet capacity ν. The conjugate νc of a

concave capacity, defined by ∀A ⊆ Ω, νc(A) = 1− ν(Ac) is

a convex capacity. The conjugate Nπ of a possibility measure

Ππ is a necessity measure.

Those two kinds of neighborhood definitions (summative and

non-summative) are linked by the fact that a concave capac-

ity ν can encode a special family of probability measures (or

equivalently additive measures), noted core(νc) and defined

by

core(νc) = {Pκ | ∀A ⊆ Ω, νc(A) ≤ Pκ(A) ≤ ν(A)}. (5)

Now when the summative neighborhood is replaced by a ca-

pacity, estimation (3) is replaced by an estimation involving a

Choquet integral [2, 3]

Cν(S) = (C)
∫

Ω

Sdν =
∫ +∞

0

ν({ω : S(ω) > α})dα. (6)

The encoding property of a capacity ν (5) is transferred to the

estimation as stressed by these inequalities:

∀κ|Pκ ∈ core(νc), Cνc(S) ≤ Eκ(S) ≤ Cν(S) (7)

See [4] proposition 3 and [2] proposition 10.3 for proofs.

As mentioned by Dubois and al. in [5], any summative kernel

κ, which is centered and symmetric, verifies the domination

property

∀A ⊆ Ω, Pκ(A) ≤ ΠT (A), (8)

with T the triangular possibility distribution. This means that

T encodes any centered symmetric summative kernel, which

justifies our choice for the use of the triangular possibility

distribution for the interplay between continuous and discrete.

The domination of possibility measures can easily be extended

to higher dimensions. For the dimension of 2, on a space

Ω1 × Ω2, a product of marginal possibility measures Π1 and

Π2 is defined in [1] by:

∀(A, B) ⊆ Ω1 × Ω2, Π12(A, B) = min(Π1(A), Π2(B)).

Suppose that marginally, Π1 ≥ P1 and Π2 ≥ P2, with P1 and

P2 probability measures on, respectively, Ω1 and Ω2. Then

Π12 dominates P12 defined by:

∀(A, B) ⊆ Ω1 × Ω2, P12(A, B) = P1(A)P2(B).

min(Π1(A), Π2(B)) ≥ min(P1(A), P2(B)) ≥ P1(A)P2(B),
because P ≤ 1. Therefore, by definitions of P12 and Π12,

Π12(A, B) ≥ P12(A, B).

3. DERIVATION WITH NON-SUMMATIVE KERNEL

As presented in section 1, most of the usual derivative kernels

can be obtained by subtracting two summative kernels η+ and

η−. Convolving signal S with the derivative kernel given by

expression (1) is equivalent to summing up the convolution of

S with the kernel η+ and the convolution of the opposite of S
with kernel η−:

DS(x) = (η+(x + εx)− η−(x− εx)) ∗ S(x)
= η+(x + εx) ∗ S(x) + η−(x− εx) ∗ (−S(x))

Therefore let κ+(x) = η+(x+ εx) and κ−(x) = η−(x− εx).
The estimate of DS(x), derivative of S at location x, is given

by:

DS(x) = Eκ+(S) + Eκ−(−S) (9)

If κ+ (resp. κ−) is dominated by a concave capacity ν+ (resp.

ν−) then, the value Eκ+(S) (resp. Eκ−(−S)) belongs to

[Cν+c(S), Cν+(S)] (resp. [Cν−c(−S), Cν−(−S)]). If κ+

(resp. κ−) is a bounded symmetric positive kernel, then the

triangular possibility distribution can be used to ensure this

domination (see section 2).

Fig. 1. Strong triangular partition of the real line and fuzzy

neighborhood W .

The signal to be processed being discrete, a kernel has to en-

sure the interplay between continuous and discrete. In our ap-

proach, this interplay makes use of triangular fuzzy numbers.

The continuous signal is supposed to be known on impre-

cise locations defined by the fuzzy partition (Hi)i∈{1,...,N}
depicted on Figure (1). We aim at transferring the discrete

knowledge of the signal to any weighted neighborhood W .

This transfer is ensured by using a Choquet integral. The sig-

nal being discrete, expression (6) can be simply computed by:

CνW
(S) =

N∑
n=1

S(n)[νW (A(n))− νW (A(n+1))], (10)

where Sn is the real positive value associated with the nth cell

Hn and (.) indicates a permutation such that S(1) ≤ S(2) ≤
... ≤ S(N). The A(n) = {H(n), ...,H(N)} are binary coali-

tions of cells whose associated values are superior or equal to

S(n).

Computation of Cνc
W

(S) can be simply achieved while notic-

ing that Cνc
W

(S) = −CνW
(−S).

We propose to use the pignistic transfer to define the capacity

used in Equation (10). Such a capacity is concave and its
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expression is:

νW (A(n)) =
|W ⋂

A(n)|
|W ⋂

A(1)| . (11)

Expression (9), associated with capacity νW , leads to an im-

precise estimation of the first derivative of S:

[DS,DS] = [−Cν+
W

(−S), Cν+
W

(S)] + [−Cν−W
(S), Cν−W

(−S)]

= [−Cν+
W

(−S)− Cν−W
(S), Cν+

W
(S) + Cν−W

(−S)].

Since the capacity νW is concave, this interval contains all

estimates of the derivative provided by a probability density

function dominated by νW (i.e. all probability density func-

tions defined by a kernel dominated by the possibility distri-

bution defined by W ). While the length of this interval in-

creases with the noise level, this derivative can be supposed

to be null if 0 ∈ [DS,DS].

4. EDGE DETECTION WITH NON-SUMMATIVE
KERNEL BASED GRADIENT

The discrete image representation introduces an imprecision

on the grey level localization. Let Pi,j be the pixel located

at (i, j) on the image. Its grey level localization is unknown

within the 2D interval [i−Δh, i + Δh]× [j −Δv, j + Δv],
where Δh (resp. Δv) is half the width of the horizontal (resp.

vertical) sampling. This imprecision is due to the spatial sam-

pling and can be modeled by a fuzzy partition [6]. Each

pixel of the image is considered as a bi-dimensional impre-

cise quantity. The 1-D triangular fuzzy numbers presented in

section 2 are extended in 2D pyramidal fuzzy numbers (Fig-

ure 2(a)) considering the t-norm min (cartesian product of two

1-D triangular fuzzy numbers), providing a strong fuzzy par-

tition of the image.

(a) Fuzzy pixel (b) 2D non-summative kernels

Fig. 2. Fuzzy representation.

As shown in section 2, the domination property still holds.

Therefore, the properties presented in section 3 can be eas-

ily extended to provide an imprecise estimation of the gra-

dient. We present this approach with the x-derivative. Let

κ(x, y) = κx(x)κy(y) be a separable kernel used to perform

the derivation, the 2D extension of expression (1) is given by:

δ

δx
(κ(x, y)) =

δ

δx
(κx(x)κy(y)) =

δ

δx
(κx(x))κy(y)

= (η+(x + εx)− η−(x− εx))κy(y).

Let κ+
x = η+(x + εx)κy(y) and κ−x = η−(x − εx)κy(y).

Therefore, an estimate of the derivative of the 2D signal S
along the x-axis (GSx) can be given by simply adding the

convolution of S with the summative kernel κ+
x to the convo-

lution of (−S) with the summative kernel κ−x :

GSx = Eκ+
x
(S) + Eκ−x (−S). (12)

If ν+
x (resp. ν−x ) is a concave capacity that dominates the

kernel κ+
x (resp. κ−x ) then the domination can be easily trans-

ferred to the estimation process by using the Choquet inte-

gral (10). Then, the imprecise estimation of GSx is a sim-

ple 2D extension of the approach presented in section 3. It

involves two pyramidal non-summative kernels depicted on

Figure 2(b) dominating a family of kernels κ+
x and κ−x . Im-

precise estimation of GSy is achieved in the same way.

Within this approach, the edge detection is performed on the

median estimate of the gradient [GSx, GSx] × [GSy, GSy].
An extremum of this function is discarded if

(0, 0) ∈ [GSx, GSx]× [GSy, GSy].

5. EXPERIMENTAL RESULTS

In this section, we compare our approach with the Canny-

Deriche [7], Shen-Castan [8] and Prewitt approaches. This

comparison uses the artificial image depicted in Figure 3(a).

This image has been corrupted with two kinds of noise. We

have applied, first, a Gaussian noise with an increasing vari-

ance σ (Figure 3(b) σ = 25) to test the robustness of the

edge detection to the noise level and, then, a Poisson noise to

highlight the robustness of the method within variations of the

noise level. This image mostly contains sharp transitions and

therefore is perfectly appropriate for edge detection by using

the conventional approaches.

(a) original (b) Gaussian noise (c) Poisson noise

Fig. 3. Artificial image with Gaussian and Poisson noise.

The operators performances are quantified by the parameter

P1 defined by Fram and Deutsch in [9]. P1 measures the sen-

sitivity of the detector in presence of noise. P1 = 1 if the

detecting of edges is optimal.
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In a first experiment, edges are detected without any thresh-

old. Figure 4(a) shows that all approaches except ours fail

when σ > 3. In a second approach, we have applied an

arbitrary threshold chosen, for each method, to provide the

best result within the P1-criterion. Figure 4(b) shows that

the Prewitt filter is the most sensible to noise. The Canny-

Deriche and Shen-Castan approaches have a similar behav-

ior: while σ < 25, optimal edges are correctly detected. The

results decrease until σ < 40. After, edge and noise are con-

fused. Within our approach, an optimal edge is detected while

σ < 30. When σ > 40, all gradient estimates are discarded

as being null.

(a) without threshold

(b) with an arbitrary threshold

Fig. 4. Comparative P1 values on Gaussian noised image.

Approach Prewitt Deriche Shen Fuzzy

P1 0.089676 0.14975 0.141 0.69881

Table 1. P1 values on the Poisson noised image

When edge detection is applied on tomographic images, the

threshold based approach usually fails because the noise level

is not uniformly distributed in the image. The noise in recon-

structed tomographic images is usually assumed to be Poisson

distributed . In the last experiment, we have corrupted the test

image with a Poisson noise. Results of this experiment are re-

ported in Table 1. It shows that the fuzzy approach is 8 times

less sensitive than the Prewitt approach and 5 times less than

the Canny-Deriche and Shen-Castan approaches.

6. CONCLUSIONS

In this paper, we have presented a new approach for gradient-

based edge detection. This approach involves non-summative

kernels and Choquet integrals and produces, as output, interval-

valued estimation of the gradient. When used to detect edges

on a noisy image, our approach, contrarily to classical meth-

ods, does not need an arbitrary threshold to discard spurious

edges, while the threshold is naturally provided by the gradi-

ent estimation. Tests on synthetic images have illustrated the

good performances of this approach with respect to state of

art methods. Tests on real and particulary tomographic im-

ages have also been performed, but not reported here, while

the appropriateness of the edge detection cannot be measured

by an objective criterion, since the real edges of the image are

usually unknown. These tests have shown the high reliability

of the estimated noise level when repeating the experiment on

different acquisitions of the same image.
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[4] D. Schmeidler, “Integral representation without additiv-

ity,” in Proc. of the Am. Math. Soc., June 1986, vol. 97,

pp. 255–261. 2

[5] D. Dubois, H. Prade, L. Foulloy, and G. Mauris,

“Probability-possibility transformations, triangular fuzzy

sets, and probabilistic inequalities,” Reliable Computing,

vol. 10, pp. 273–297, 2004. 2

[6] Olivier Strauss and Frederic Comby, “Fuzzy morphol-

ogy for omnidirectional images,” in ICIP, Genova, Italy,

September 11-14 2005, vol. 2, pp. 141–144. 3

[7] R. Deriche, “Fast algorithms for low-level vision,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 12, no. 1, pp. 78–

87, 1990. 3

[8] J. Shen and S. Castan, “An optimal linear operator for

step edge detection computer vision,” Graphics, and Im-
age Processing, vol. 54, pp. 112–133, 1992. 3

[9] E. S. Deutsch and J. R. Fram, “A quantitative study of the

orientational bias of some edge detector schemes,” IEEE
Transactions on Computers, March 1978. 3

III - 52


