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ABSTRACT 
A more accurate algorithm for corner and edge detections 
that is the improved form of the well-known Harris’ algo-
rithm is introduced. First, instead of approximating |L[m+x, 
n+y]–L[m, n]|2 just in terms of x2, xy, and y2, we will ap-
proximate |L[m+x, n+y]–L[m, n]|(L[m+x, n+y]–L[m, n]) by 
the linear combination of x2, xy, y2, x, y, and 1. With the 
modifications, we can observe the sign of variation. It can 
avoid misjudging the pixel at a dot or on a ridge as a cor-
ner and is also helpful for increasing the robustness to 
noise. Moreover, we also use orthogonal polynomial ex-
pansion and table looking up and define the cornity as the 
“integration” of the quadratic function to further improve 
the performance. From simulations, our algorithm can 
much reduce the probability of regarding a non-corner 
pixel as a corner. In addition, our algorithm is also effec-
tive for edge detection.    
 

Index terms:  corner detection, edge detection, 
quadratic polynomial, ridge detection, noise immunity     
 
 

1. INTRODUCTION 
Corner detection is important for feature extraction and 

pattern recognition. In [1], Harris and Stephens proposed a 
corner detection algorithm. First, they used a quadratic 
polynomial to approximate the variation around [m, n]:       
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where Am,n, Bm,n, and Cm,n were calculated from the corre-
lations between the variations and a window function: 
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Then the variations along the principal axes can be calcu-
lated from the eigenvalues of the following 2 2 matrix:            
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If both the two eigenvalues of Hm,n are large, then we rec-
ognize the pixel [m, n] as a corner. Harris and Stephens 
proposed a systematic and effective way to detect corners. 

However, the algorithm has some problems, such as the 
ability to distinguish the corner from the peak or the dip 
and the robustness to noise should be improved. In [5], an 
improved algorithm based on modifying the detection 
criterion was proposed. In this paper, we apply many new 
ideas listed in Section 2 to improve Harris’ algorithm for 
corner detection.  

2.  IDEAS FOR IMPROVING PERFORMANCE 

(A) Instead of approximating |L[m+x, n+y] L[m, n]|2, we 
use a quadratic polynomial to approximate L1[m, n, x, y]:    

      L1[m, n, x, y] 
  = ),,(,, nmLynxmLnmLynxmL . (5)     

This modification is helpful for improving the robust-
ness to noise. Suppose that the image is interfered by a 
noise [m, n], i.e., H[m, n] = L[m, n] + [m, n], and  
    E[ [m, n]] = 0,     E[ [m, n] [m+x, n+y]] = x,,y,    (6) 
    prob{ [m, n] = k} = prob{ [m, n] = k},  (7)    
then we can prove that               
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Thus, the mean of (1) is affected by noise, but from (9) 
the mean of L1[m, n, x, y] will be not affected by noise.     

The sign of variation is also important to distinguish 
a corner from a peak. For both a corner pixel and a peak, 
the variations along all the directions are large, as in Fig. 
1. If we observe only the amplitude of variations, as Har-
ris’ algorithm, they are hard to distinguish. In contrast, if 
the sign of variations can be observed, we can distin-
guish them. For a peak, the signs of variations along all 
the directions are negative. For a corner, sometimes 
variation is positive and sometimes it is negative.         

(B) We will approximate the variation by the linear com-
bination of x2, xy, y2, x, y, and 1, see (16). For Harris’ al-
gorithm in (1), only the terms of x2, xy, and y2 are used. 
Note that x2 and y2 are even-even bases (i.e., even re-
spect to both x and y) and xy is an odd-odd basis. Using 
them is hard to observe even-odd and odd-even varia-
tions. Thus, to observe all types of variations, we should 
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use the terms of x (an odd-even basis) and y (an even-
odd basis). With these terms, we can observe more 
styles of variations and classify the pixel into more types.          

(C) Instead of (3), we use “orthogonal polynomial expan-
sion” to find the coefficients. It can assure that the mean 
square error of approximation to be minimal [2].             

(D) In [1], Harris classified the pixel into only three types: 
corners, edges, and plains. In this paper, with the help of 
Case table (see Table 1), we classify the pixel into cor-
ners, edges, ridges, valleys, peaks, saddles, and plains.                    

(E) From derivations and experiments, we find that, to 
achieve the best accuracy, it is better to define the cornity 
as the “integration” of the quadratic function. See Step 6.     
 

3.  ALGORITHM 
(Step 1) First, find the orthonormal polynomial set that is 
orthogonal respect to a weighting function w[m, n]. That is,    
   2
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                         for k = 1, 2, 3, 4, 5, 6,      (10) 
and the parameters aj,k should be chosen properly such that         
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We can use the Gram-Schmidt algorithm to find aj,k. For 
example, if we choose the weighting function as                     
   ]20/)(exp[],[ 22 yxyxw    for (x2 + y2)1/2 < 6.5, (12)            
    w[x, y] = 0        for (x2 + y2)1/2 > 6.5,            (13) 
then the orthogonal polynomials are     
 1339.0,1 yx , xyx 0498.0,2 , yyx 0498.0,3 ,   
 1131.00157.0,4 yyx ,    xyyx 0206.0,5 ,        

 1296.000213.00158.0, 22
6 xyyx .           (14) 

(Step 2) Then, we do the inner product for L1[m, n, x, y] is 
(defined in (5)) and k[x, y], where k = 1, 2, 3, 4, 5, 6:       
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(Step 3) Then we express the variation around [m, n] by:            
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Note that Qm,n[x, y]  L1[m, n, x, y] (defined in (5)). Then, 
we expand Qm,n[x, y] as a function of principal axes   
      Qm,n[x, y],   
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where Xm,n = xcos m,n+ysin m,n, Ym,n = xsin m,n+ycos m,n, 
and the principal axes [cos m,n, sin m,n]T, [ sin m,n, 
cos m,n]T are the eigenvectors of             
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c1,m,n and c2,m,n are the corresponding eigenvalues, and     
          c3m,n = p4m,ncos m,n + p5m,nsin m,n, 
          c4m,n = p4m,nsin m,n + p5m,ncos m,n.      (19)   

Fig. 1  Variations of gray levels along four principal directions 
for the pixel at a corner, on an edge, at a peak, and on a ridge. 

Table 1  Case table.    
v1, v2 

v3, v4 
( , ) ( , ~)

(~, )
( , ) 
( , ) 

(~, ~) (~, )
(~, )

( , )

( , ) Q1 C C E1 E1 Q3 
( , ~) (~, ) C E E P CY E2 
( , ) ( , ) C E E E E C 

(~, ~) E1 P E P P E2 
(~, ) ( , ~) E1 CY E P E C 

( , ) S E2 C E2 C Q2 
C: corner,              E: edge,                E1: ridge,            E2: valley,     
Q1: peak      Q2: dip,      Q3: saddle,      CY: Y-corner,     P: plain. 

(Step 4) From (19), we can observe the variation along the 
two principal axes. For example, the variation along the 
positive part of Xm,n-axis (denoted by +Xm,n) is:     
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Similarly, the variations along the negative part of Xm,n-
axis (denoted by –Xm,n) and along the positive and nega-
tive parts of Ym,n-axis (denoted by +Ym,n and –Ym,n) are:   
         for Xm,n:   2/3/ 2
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We may choose t as 2~3. Then, we choose a threshold d    
    vk >     denoted by ,    vk <   denoted by ,                 
      vk    denoted by ~.    (23) 
Harris’ algorithm classifies the variation into only 3 types. 
For our algorithm, there are four directions ( Xm,n, Ym,n) 
and for each direction there are 3 types of variations ( , , 
~) . In sum, there are 34 = 81 types of variations.             
(Step 5) For the typical corner in Fig. 1, the variation 
along one axis is ( , ) and along another axis is ( , ). 
Thus, we conclude that if (v1, v2) = ( , ) and (v3, v4) = ( , 
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), the pixel should be at the corner. If a pixel is on an 
edge, then the variation along one principal axis is ( , ) 
and along another principal axis is (~, ~). We use Table 1 
(Case table) to summarize the relations between the varia-
tion style and the most possible location of a pixel. With it, 
we can conclude the pixel is at a corner, on an edge, on a 
plane, on a ridge, in a valley, or at a peak.      
(Step 6) In Step 5, we just obtain the “corner candi-
dates”. Sometimes, the pixel that is not at a corner but 
near the corner will be recognized as a corner after Step 5. 
Thus we should use the cornity score to choose the corner 
from the corner candidates. We find that the most effec-
tive way is to define the cornity as the integration of the 
quadratic polynomial Qm,n[x, y] in a circular region:       

      cornity = 
R

nm rdrdyxQ
0

2

0 , , ,          (24) 

where Xm,n = rcos , Ym,n = rsin , and Qm,n[x, y] is defined 
in (16) and (17). Eq. (24) has an analytic solution:       
    cornity = 2
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Why is the cornity defined as the integration of Qm,n[x, y]? 
Note that Qm,n[x,y] approximates the variation around [m,n]  
  Qm,n[x, y]  |L[m+x, n+y]  L[m, n]|(L[m+x, n+y] L[m, n])    
                        when x and y are small.           (26) 
If [m, n] is on a plain (L[m+x, n+y] L[m, n]=0) or an edge 
(L[m+x, n+y] L[m, n]= (L[m x, n y] L[m, n])), then the 
integration of Qm,n(x, y) is near to zero. If [m, n] is at a 
corner, then the integration of Qm,n[x, y] will be far from 
zero. Thus, Qm,n[x, y] is good for cornity measurement.   
(Step 7) If a pixel [m, n] is a corner candidate and  
   cornity[m, n]  cornity[m+ , n+ ]    for ,  =-2~2. (27) 
then [m, n] is recognized as a corner.       
 

4.  EDGE DETECTION 
Our algorithm can not only detect the corner but also 

detect the edge, the ridge, the valley, and the plain regions. 
To detect the edge, Steps 1 5 are the same as those of 
corner detection. In Step 6, we define the edge score as:        

          E score = 
R

nm rdrdyxT
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E score also has an analytic solution. If |t3,m,n/a|  R,         
   E score = ]cos3/)3[cos( 00
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                         )]2sin(2[ 00
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where a2 = t1,m,n
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2 and  0 =  asin[ t3,m,n/(aR)], /2 

 0  /2. If |t3,m,n/a| > R, then       
            E score =  |t3,m,n|R2 .             (31) 
For an “edge candidate” pixel [m, n], if  At least 17 ad-
jective pixels satisfy:  
   E score[m+ , n+ ]  E score[m, n]   for |  |, |  |  2. (32) 
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Fig. 2   Corner detection and edge detection for Star image. 

 moreover, we classify the adjective pixels into four 
quadrants (  >0 &  >0,  >0 &  <0,  <0 &  >0, and  
<0 &  <0) and for each quadrant, there should be at least 
one pixel that satisfies (33), then, we can treat [m, n] as a 
pixel on an edge.    
 

5.  EXPERIMENTS 
We first give an example in Fig. 2. We follow Steps 

1~4 and use the Case table in Step 5 to find the corner and 
the edge candidates (shown in Figs. 2(a)(b)). Then, we use 
the “cornity” and “E score” and to select corners and 
edges from the corner and edge candidates. The results are 
shown in Fig. 2(c)(d), which show corners and edges are 
detected successfully.   

Then we do some experiments to compare the per-
formances of the proposed and the Harris’ algorithm for 
the image in Fig. 3(a). When using Harris’ algorithm, the 
results of corner detection is shown in Fig. 3(b). Note that 
some pixels at the dots, on the ridge, in the valley, or in a 
noise-interfered plain are treated as corners. From com-
mon senses, they should not be corners. However, since 
Harris’ algorithm observes just the “amplitudes” of varia-
tions, and these pixels have large variations along two 
principle axes, they are misjudged as corners.     

If we use the proposed algorithm, we can distinguish a 
corner from an isolated pixel, a belt valley, and a belt 
ridge according to the “sign” of variation. The result is 
shown in Fig. 3(c). Note that no non-corner pixel is mis-
judged as a corner. Especially, no pixel in the lower-right 
part (the noised-interfered plain) is regarded as a corner. It 
proves the theory in (9), i.e., the proposed algorithm is 
much more robust to noise.  

In Fig. 4, we also do s experiment and show that the 
proposed algorithm can avoid regarding the Gaussian-like 
noise interfered region as a corner.      
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      (a)  Input Image                          (b)  Using Harris’ algorithm     
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                (c)  Using the proposed algorithm            

              20 40 60 80 100

20

40

60

80

100

               
Fig. 3  (a) Image consists of three dots (upper-left), a valley (up-

per-right), a ridge (lower-left), and a noise-interfered region 
(lower-right). (b)(c) The results of corner detections.   

 (a) Input Image   (b) by Harris’ method  (c) by proposed method   
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Fig. 4  Corner detection results for the plain interfered by Gaus-
sian-like noise.    

We also do the experiment for a natural image in Figs. 
5 and 6. It is obvious that, when using the proposed algo-
rithm, the probability of misjudging the pixel in a valley, 
on a ridge, or at the isolated dots as a corner can be much 
reduced. Our algorithm can also detect most of the edges 
of Lena image successfully, as in Fig. 7.   

6. CONCLUSIONS 
We introduced an improved algorithm for corner and 

edge detections. For the proposed algorithm, since the 
“sign” of variations is considered, the difference among a 
corner, a belt ridge, and an isolated dot can be observed. 
Due to the same reason, our algorithm is more robust to 
noise, which was proven in Figs. 3, 4 and 6. We also ap-
ply orthogonal polynomial expansion, case table and the 
new definition of cornity to improve the performance.    
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Fig. 5  Using Harris’ algorithm to do corner detection  
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Fig. 6  Using the proposed algorithm to do corner detection. 
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Fig. 7  Using the proposed algorithm to do edge detection. 
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