
TOPOLOGICAL GRADIENT OPERATORS FOR  
EDGE DETECTION 

 
Hakan Guray Senel 

 
Department of Electrical Engineering  

Anadolu University 
Eskisehir, Turkey 

 
ABSTRACT 

 
Edge detection in image processing is the task of locating 
pixel value variations in images. First methods were 
directional derivative based linear filters. One of the most 
important problems of these methods that are based on 
computation of approximate derivative are their sensitivity 
to noise due to small kernel sizes. Small kernels are widely 
used to avoid the effect of nearby objects. In this work, we 
propose a fuzzy topology based method that allows the use 
of larger gradient kernels. This method produces thin 
gradient lines by limiting the support area of gradient 
kernels for slowly varying ramp-like edges. By applying the 
proposed method on synthetic and natural images, it is 
observed that it decreases the output area around the edge 
and has a better noise suppression compared to 
conventional gradient operators.  
 
Index Terms— Edge detection, fuzzy image topology 
 

1. INTRODUCTION 
 
Edge detection is the process of localizing pixel intensity 
transitions. The success of edge detection provides a good 
basis for the performance of higher level image processing 
tasks such as object recognition, target tracking and 
segmentation, since it reduces the amount of information to 
be processed. Over the years, many methods have been 
proposed for edge detection [1,2]. 

Typically, edge detection is performed by computing 
an edge image by a linear filter that is an approximation of 
a first or a second order derivative. Then a decision stage, 
which requires an application of a threshold, takes place. 
Due to the sensitivity of derivative operators to noise, a 
smoothing step may also be needed prior to derivative 
calculation. While the smoothing operation suppresses 
noise and removes small details, it may cause localization 
errors. 

Most conventional edge detectors are based on some 
edge and noise model. The most common model is an ideal 
step edge contaminated with Gaussian noise as in the case 

of Canny filter [1]. Some edge detection methods also 
assume that only one edge structure is contained within the 
boundaries of an operator kernel. In order to satisfy this 
assumption, kernel sizes are selected as small as possible. 
This model is very restrictive for two reasons. Firstly, in 
most images there are smoothly varying edges. Secondly, 
the presence of neighboring objects in the scene contradicts 
with the model of having a single step function within an 
observation window. The influence of neighboring objects 
in the scene may introduce a considerable impact on the 
edge detection process [3]. 

If a gradient kernel with a small support is applied on 
an image that is corrupted by noise, disconnected and 
spurious edge information may be obtained. This is mainly 
due to the fact that limited number of pixels is used in the 
process and noisy pixel values may dominate in the 
gradient calculation. Small operators, such as 2x2 Roberts, 
3x3 Sobel and Prewitt are often used, even though they are 
known to be adversely affected by noise [4]. Using larger 
masks are often discouraged since they can increase the 
possibility of interference from neighboring edges [5]. 

Although narrow operators are best for describing 
detailed texture, wide operators report low-amplitude 
responses more reliably [6]. By using kernels with larger 
supports (e.g. 11 x 11 or 13 x 13), it is possible to design 
edge detection schemes that yield good performance in 
three respects: accuracy in derivative calculation, handling 
of slowly varying edges and good noise immunity. 
Immunity to noise is also needed for tolerating deviations 
from edge models [7]. If narrow operators are employed in 
the edge detection process, ideal step edges are only taken 
into consideration. If the edge is not fully contained in the 
mask due to sampling reasons, the response of the operator 
may be adversely affected. 
 

2. FUZZY TOPOLOGY AND DOCM 
 
The notion of connectedness is a fundamental concept of 
digital topology. Connected components are basic 
information units in an image. Digital topology has 
straightforward application to binary images where regions, 
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edges, and object boundaries can be defined and located 
with precision. Rosenfeld [8] extended digital topology 
from binary to multivalued images by modeling an intensity 
image as a fuzzy set. If the intensity values are scaled in the 
range [0,1], the gray level of a pixel can be associated with 
its degree of membership in the set of high-valued or 
“bright” pixels.  
 
2.1. Fuzzy Topology 

 
Let ∑ be a rectangular array of integer-coordinate 

points. A pixel p at coordinates ( , )x y  is a member of  ∑ . 
Then a fuzzy subset W  of ∑  is a set of ordered pairs, 

( , ( ))WW p pμ=  for all p∈∑ , ( )pWμ  is a membership 
characteristic function which indicates the degree of 
membership (DOM). 

Let W  be a fuzzy subset of ∑  and let 
: , , , ,0 1 2p p p p p qnσ = =…  be any path between two points 

of W . The strength ( )SW σ  of σ  is defined as the 
strength of its weakest link 

0
( ) min ( )        W W i ii n

S p pσ μ σ
≤ ≤

≡ ∀ ∈   (1) 

Fuzzy topology defines the concept of degree of 
connectedness which is the quantification of spatial 
ambiguity in multilevel images. Every ordered pair ( , )p q  
of pixels are coupled by a real number in interval [0,1]. 
This value is the degree of connectedness (DOC) of p  and 
q . In practice, pixel values are not scaled. By definition, 
the degree of connectedness between two points p  and q   
is defined as the strength of the strongest path of all 
possible paths connecting  p  and q  [36].  

( , ) max ( ) : , ,W WC p q S p qσ σ
σ

≡ ∀ …        (2) 

Two points are p  and q  connected in W , if 

( , ) min( ( ), ( ))
W W W

C p q p qμ μ= . Senel [9] introduced the 
concept of degree of connectedness map to depict how a 
pixel, o W∈  is connected to the others. Degree of 
connectedness map (DOCM) is defined as  

( ) ( , )DOCM o C o p p WW W= ∀ ∈  (3) 
DOC maps can be used to remove image components 

that are not connected to the center pixel. In doing so, a 
new observation window is obtained by replacing pixel 
values with their degree of connectedness values to the 
center. Despite the vague expression “all possible paths 
connecting two points”, DOCM can be computed 
algorithmically [9]. DOCM has some interesting properties 
that make it the fundamental concept for the method 
proposed in this paper.  
 

2.2. Degree of Connectedness Map 
 
For clarity, properties of DOCM are explained on one 
dimensional drawing. Although two dimensional scenes 
may behave in a different way due to multiple paths exist 
between any two pixels, we believe that examples in one 
dimension would be clear enough to understand what 
DOCM operation does.  

 
Fig. 1.a. shows a cross section of an image with two 
parallel lines. If the degree of connectedness map is 
constructed with respect to the origin (Fig. 1.b.), the object 
on the right is not seen in DOCM. Therefore, DOCM 
representation has objects that are connected to the origin. 
If the origin is not located at the intensity maxima of the 
object (Fig. 1.c.), the object on the left is truncated. 
Therefore, DOCM removes components unconnected to the 
origin as well as some part of the object depending on the 
intensity value of the origin. Such a behavior may seem 
undesired at first glance since it affects gradient magnitude 
along the edge. Unconnected objects are removed at the 
expense of deformation. Reader may refer to [11] for other 
properties of DOCM. 
 

3. TOPOLOGY BASED GRADIENT OPERATORS 
 
A method must be devised so that larger kernels are used 
but does not allow unconnected close image components to 
affect the edge detector output. All data lead us to use 
DOCM on larger windows and calculate derivative, or 
gradient with kernels larger than 5 5× . 

Let I  be an image with pixels ( , )p x y , and ( , )I x y  
is the intensity value of the ( , )p x y . Let W  be an 
(2 1) (2 1)n n+ × + observation window. DOCM for bright 
pixels at the coordinates ( , )x y  on I  is computed as 

 
Fig. 1. a) One dimensional cross section of two close  objects, 
b) Degree of connectedness map (DOCM) with respect to the 
origin, c) DOCM with respect to another origin. 
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      (4) 
Similarly but for dark pixels, DOCM for dark objects 
DOCMd is calculated on the negative image. 

Let  xg and  yg  are gradient operators with a kernel 
size of (2 1) (2 1)k k+ × +   elements. In practice, DOCM 
window must be larger than the size of the kernel. 
Topological gradients along the x axis for dark and bright 
objects are 

1 1

1 1 1 1
,

( , ) ( , ; , ) ( , )b

x x
x y

TG x y DOCMb x y x y g x y
∀

= ∑       (5) 

where 1 [ , ]x x k x k∈ − + , 1 [ , ]y y k y k∈ − +  and xg is the 

operator for the x axis. ( , )d

xTG x y  is calculated similarly 
using DOCMd. 

 
For conventional operators, such as Sobel, gradient 
becomes significant on the region where the intensity 
change occurs as well as some of area around the edge (Fig. 
2d). For larger kernels, the gradient becomes significantly 
thicker. However, due to the asymmetric behavior 
of DOCMb , gradient is biased to the bright side for 
slowly varying edges (Fig. 2b).  Similarly, gradient is 
biased to the dark side with DOCMd (Fig. 2c). 

Therefore, it seems that information obtained from 
DOCMb and DOCMd based gradient calculations 
supplement each other. If the minimum value of DOCMb 
(Fig 2b) and DOCMd (Fig. 2c) based gradient values is 
taken as the gradient operator output, the gradient 
magnitude becomes nonzero in the area where the intensity 

changes occurs (Fig. 3b). The topological gradient is then 
defined as 

min( , )b dTG TG TG=   (6) 
TG tolerates the use of larger kernels since gradient 

residue around the edge due to large kernel size does not 
occur. This result is the main contribution of this paper.  

 
4. RESULTS 

 
In this section, the performance of TG with Sobel kernel is 
investigated. Results obtained with conventional Sobel are 
compared to that of TG with Sobel. Here, our intension is to 
demonstrate how to integrate DOCM representation into 
any gradient calculation. We believe that if integration of 
DOCM with any gradient operator is shown to perform 
better than the conventional one, any gradient operator 
coupled with DOCM should also yield better results. 
       A synthetic 1000x90 pixel image with a ramp edge is 
formed. One row of the image is calculated as follows 

200 43
( ( )) 200 5( 43) 44 62

100 63 90

l
I p l l l

l

≤
= − − ≤ ≤

≤ ≤

⎧⎪
⎨
⎪⎩

              (7) 

Different levels of Gaussian noise are added into the image 
and a series of noisy images are generated. Then, 
(2 1) (2 1)k k+ × +  Sobel operator and (2 1) (2 1)k k+ × +  
Sobel inside (2 3) (2 3)k k+ × +  DOCM are applied on 
images contaminated with additive Gaussian noise of 
variances 5, 10, 15 and 20. The size of DOCM should be 
slightly larger than the kernel of the gradient operator. If 
very large sizes are used, two points may get connected 
over a path that is outside the span of the gradient kernel. 
Using slightly larger DOCM than the gradient kernel 
ensures the locality of the solution.  

 
In order to observe how both methods react to noise, 

two features need to be examined. First, we need to measure 
how much the gradient spreads over the edge due to kernel 

 
Fig. 3 a) slowly varying edge , b) proposed topological 
gradient,  c) boundaries of conventional gradient 

 
Fig. 2. a) slowly varying edge, b) DOCMb with Sobel kernel,  
c) DOCMd with Sobel operator, d) Edge boundaries of 
conventional Sobel gradient 
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size. For objectivity reasons, this value needs to be 
compared to the magnitude calculated on the edge. This 
way, the amount of spread across the edge can be measured. 
We define the magnitude blur rate (BR) for any image row 
as 

1 2

1 2

2

1

1 1

( ( )) ( ( ))

( ( ))

e e

l e k l e k

e

l e

G p l G p l

BR

G p l

− +

= − = +

=

+

=
∑ ∑

∑
              (8) 

where 1e and 2e are the pixel locations that marks the 

beginning and the end of the edge, and k  is the half size of 
a (2 1) (2 1)k k+ × + gradient kernel. 

 
 

The second feature is to measure the resilience of the 
method against noise. Standard deviation of magnitudes on 
the flat area can be used as a measure. Resilience against 
noise, R, is defined as 

 
( )

1 1
2

2 1

1

( ( ))

2

e k

g
l

G p l m
R

e k

− −

=

−
=

− −

∑
                  (9) 

where gm is the sample mean of the flat area.  Table I 
shows the magnitude blur rates for different noise levels.  

We validate the efficacy of the topological filters using 
Lena image. Lena image has some challenging features for 
edge operators. For instance, feathers on the hat, shadows 
on the face, blurry background and eyes are difficult to 
handle. Fig 4.a is the result of topological Sobel. Fig. 4.b is 
calculated by conventional Sobel. It is seen that topological 
Sobel output has thinner lines than the other. On the other 
hand, Fig. 5.a and 5.b shows the results of topological and 
conventional Sobel operators applied on the “boat” image, 
respectively. The topological operator is seen to pick up 
more details than the conventional one.  
 

 
 

5. FUTURE WORK 
 
The idea of integrating DOCM into the gradient calculation 
is the main contribution of this paper. It is also shown that 
for slowly varying edges, topological gradient is better than 
the conventional filter. Integration of DOCM into other 
edge detection methods needs to be investigated.  
 

6. REFERENCES 
 
[1] Marr D. and Hildreth E., “Theory of edge detection,” Proc. R. 
Soc. Lond. A, Math. Phys. Sci., vol. B 207, pp. 187–217, 1980. 
[2] Canny, J.F., “A computational approach to edge detection”, 
IEEE Transactions on Pattern Analysis and Machine Intelligence 
8 (6), 1986, pp. 679-698. 
[3] van der Heijden, F., ‘Edge and Line Feature Extraction Based 
on Covariance Models’, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol.17, No. 1, Jan. 1995. 
[4] Konishi S., et al. “Statistical Edge Detection: Learning and 
Evaluating Edge Cues”, , IEEE Transactions On Pattern Analysis 
And Machine Intelligence, Vol. 25, No. 1, pp. 27-74, 2003. 
[5] Suzuki et al, “Neural Edge Enhancer for Supervised Edge 
Enhancement from Noisy Images”, IEEE Transactions On Pattern 
Analysis And Machine Intelligence, Vol. 25, No. 12, 2003. 
[6] Fleck, M, “Multiple Widths Yield Reliable Finite 
Differences”, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 14, No. 4, 1992. 
[7] Azaria et al, “The Design of two dimensional Gradient 
Estimators Based on One-Dimensional Operators”, Trans. On 
Image Processing, Vol. 5, No. 1 , 1996. 
[8] Rosenfeld, A., “fuzzy digital topology,” Information and 
Control, vol. 40, no. 1, pp. 76-87, Jan. 1979. 
[9] Senel H.G., et al “Topological Median Filters”, IEEE 
Transactions On Image Processing, Vol. 11, No. 2, 2002. 

Fig. 4 a) Topological Sobel 9x9 on a 11x11 DOCM b) 
Conventional Sobel 9x9 

Fig. 5 a) Topological Sobel 9x9 on a 11x11 DOCM (threshold 
at the level 2.5 x image  mean), b) Conventional Sobel 9x9 
(threshold at the level 2.5 x image mean) 

TABLE I 
BLUR RATES FOR DIFFERENT NOISE LEVELS 

Noise  
σ 

11x11 Sobel in 
13x13 DOCM 11x11 Sobel 

 BR R BR R 
0 0.000 0.00 0.099 0.00 

5 0.164 19.31 0.176 47.16 

10 0.203 38.88 0.216 95.55 

15 0.235 57.65 0.251 142.98 
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