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ABSTRACT

We present our system for the capturing and analysis of 3D facial
motion. A high speed camera is used as capture unit in combina-
tion with two surface mirrors. The mirrors provide two additional
virtual views of the face without the need of multiple cameras and
to avoid synchronization problems. We use this system to capture
the motion of a person’s face while speaking. Investigations of these
facial motions are presented and rigid and non-rigid motion are ana-
lyzed. In order to extract only facial deformation independent from
head pose, we use a new and simple approach for separating rigid
and non-rigid motion named Weight-Compensated Motion Estima-
tion (WCME). This approach weights the data points according to
their influence to the desired motion model. We also present first
results of our model-based facial deformation analysis. Such results
can be used for facial animations in order to achieve a higher degree
of quality.

Index Terms— 3D modeling & synthesis, parametric models
for motion estimation, mirror, multiview, facial deformation

1. INTRODUCTION

Different capture systems for the analysis of facial motions have
been presented in recent years. Although single or multi camera ap-
proaches have been addressed with different configurations, mirrors
are rarely used. One reason for this could be the resolution of the
capture unit, which is shared with all virtual views.
Since we target for the analysis of the dynamic behavior of facial
motion, the sampling rate, in which the motion states are recorded,
is an important issue. Important transitions from one state to another
get lost if only a video frame rate of 25 fps is used and these details
are not available for the natural animation of 3D models.
High-end motion capture systems, as used for movie productions,
can realistically animate another object, a person, or a creature by
mapping an actor’s motion to it [1]. Rather than only animating fa-
ces with the motion information, facial motion and specific facial
states are also analyzed for medical purposes, treatment, and diagno-
sis [2, 3]. In this case, the resolution of the analyzed facial motion is
mostly limited to the anatomically interesting points and is focused
to facial expressions rather than facial motion caused by speech.
Although different approaches for the specification of static expres-
sions are available like the Facial Action Coding System or the
MPEG-4 Facial Animation Parameters FAPs, much less has been
reported about the dynamic modeling of these motions. In [4], an
dynamic extension to FACS system is presented. In [5, 6] results of
3D speech movement analysis by using facial deformation states are
given and used for animation and tracking purposes. These results
show promising gains and lead to higher degrees of acceptance in
facial animation.
We present our capture system based on a high speed camera and

two surface mirror. These three views are used to reconstruct a 3D
model sequence of a talking person’s face. In order to analyze only
local facial deformation and not the global head movements, we in-
troduce a new and simple approach for the separation of rigid-body
and non–rigid motion named Weight Compensated Motion Estima-
tion (WCME). Additionally, initial results for the analysis of non-
rigid deformations are provided.

2. CAPTURE SYSTEM

Mirror constructions can be used to simultaneously capture more
than one view using a single capture device. In [7], a mirror con-
struction is described to capture the movements of the lips from two
views. A double mirror construction together with two cameras is
described in [6] and used to determine speech movements from a
total of four views, where the real camera views are almost similar.
We have constructed a system with two mirrors which is shown in
Fig. 1. Surface mirrors are used, in order to avoid multiple reflec-
tions of the recorded object. A high speed camera running at 200
fps and a resolution of 1536 x 1024 pixels is used for capturing.
High speed capturing, even performed at only 200 fps, requires an

Fig. 1. High speed camera and mirror construction with two surface
mirrors. Top Left Corner: Schematic scheme of the construction.

appropriate amount of scene illumination. Four flat lights as shown
in Fig. 1 are used to illuminate the scene uniformly. The mirrors are
located almost symmetrically to the z-axis and adjusted to an angle
of±31◦. Other mirror DOFs are adjusted to achieve a good balance
between all three views in the camera frame.
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2.1. Captured Material

We use our mirror construction from Fig. 1 to capture a talking per-
son’s face which is shown in Fig. 2. Due to the selected frame rate
of 200 fps and the amount of memory located on the capture device,
each sequence consists of 2048 frames.
The test person’s face was covered with around 150 markers ma-
de out of dark green fabric tape with a physical dimension of about
2 x 2 mm. Two constraints are considered during placement of the
markers onto the test person’s face: uniform distribution and good
visibility during facial deformation. The markers on the upper and
lower lip were placed in alternating rows, in order to avoid interfe-
rence problems during tracking.
The person was asked to look directly into the camera and to return
to this view after performing the requested facial deformation. Du-
ring the capture process, only small rotation angles and translation
were permitted.

Fig. 2. Captured Material: One frame of the captured sequence with
a resolution of 1536 x 1024 pixels at 200 fps. Multiple view recor-
ding using two virtual cameras turned ±31◦ to z-axis.

2.2. Calibration

Since the 3D position of all markers needs to be computed for each
frame, a calibration of the entire setup is required. This includes
the determination of the intrinsic camera parameters that specify the
projection, but also the position and orientation of the two virtual
cameras. A model-based calibration techniques [8], that exploits the
entire image information, is used to accuratly estimate the came-
ra parameters. For this particular setup, the calibration framework
needs to consider that the two virtual views are flipped horizontally
and have exactly the same intrinsic parameters as the real camera.
Therefore, a joint estimation for a single set of intrinsic parameters
(radial lens distortion, fx, and fy) and two sets of extrinsic parame-
ters is performed and used in the following to determine the exact
3D location of the markers.

3. RIGID-BODYMOTION ESTIMATION

The extraction of non-rigid deformation requires a differentiation
between rigid and non-rigid movements. Rigid body motion can be
described by 6 DOFs (rotation and translation for all axes) of the
associated 3D model and all other changes are regarded as deforma-
tion.

Rigid-body motion and deformations are very successfully deter-
mined by several different approaches. In [9, 10, 11], methods for
motion estimation from a single view using optical flow are descri-
bed. A neural network was formed to estimate the rigid-body moti-
on in [12] using multiple views. In [13] a simulated annealing ap-
proach was introduced to determine the desired motion parameters.
The classification of the available 3D model vertices into a rigid and
a non-rigid class is described in [14].
We present a new and simple approach named Weight Compensated
Motion Estimation (WCME) to estimate the rigid-body motion pa-
rameters in the presence of non-rigid deformation. This approach is
applied to existing 3D models and continuously separates the verti-
ces into rigid and non-rigid motion.

3.1. Model Reconstruction

After correcting the white balance and radial lens distortions for all
frames of the sequence, the markers are searched in the images. In a
first analysis step, the 2D marker positions are tracked in all views
and their 3D position is computed using calibration data. Starting
from the first frame, the relation between all marker positions in an
image is used to support the tracking process of the markers over
the entire sequence, e.g. motion vectors for hidden markers were
estimated by considering motion vectors of connected markers. A
triangle mesh describes the topology of the markers.
The correspondences between the middle and left view and the
middle and right view, respectively, are defined as well. These cor-
respondences are used for each frame to reconstruct two 3D models
by triangulation using the middle view as reference. The resulting
two 3D models were combined at the common vertices. This results
in a sequence of topologically identical 3D models. Each 3D model
consists of 127 vertices, 175 triangles and a per vertex labeling of
visibility.

3.2. Motion Model

Because of the very small expected relative rotations and translati-
ons between successive frames, a linearized version of the rotation
matrix is used to determine the rigid body motion. More details of
this linearized version are given in [10]. The use of linearized rotati-
on parameters leads to computational efficient and robust algorithms
but requires an iterative process to remove the approximation errors.
In this case, it turned out that two iterations are sufficient to converge
at an accurate parameter set.
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3.3. Weight Compensated Motion Estimation (WCME)

Our approach to estimate the rigid-body motion is based on the con-
tinuous classification of model data into rigid and non-rigid move-
ments. In order to achieve this goal, we have weighted the influ-
ence of the vertices used for the rigid-body motion estimation. The
weights are associated to the Euclidean distance from the rigid body
reference model to the current model. The idea is, that large deviati-
ons from the rigid-body constraint is caused by non-rigid deforma-
tion. We have used the cos2(x) function as weight function in the
range between 0 and π. The Euclidean distance is scaled such that
a weight of 0.5 is associated to the average distance of all vertices
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classified as rigid-body.

w(i, n) · �v0(n) = w(i, n) · (R · �vf (n) + �t
)

f ∈ {1, ..., F − 1}

w(i, n) = cos
2

(
e3D(i, n)

norm(i)
· π

)

norm(i) =
ē3D(i)

acos(
√

0.5)
· π

Here, w(i, n) represents the weight for each iteration i and for each
vertex n. We have tested our Weight Compensated Motion Estima-
tion (WCME) approach with a set of predefined manually labeled
rigid-body vertices. A 3D face model is used, which is deformed
along the y-axis from the eye-corners to the chin-tip, with a maxi-
mum of -50 mm at the chin-tip. The test model was rotated along the
three axes in all combinations. The differences between the ground
truth data and the estimated rotations are shown in Tab. 1. The re-
maining error is due to limited numerical accuracy.

method rotation angle
(two iterations) 1◦ 2◦ 3◦ 4◦ 5◦

mean predefined 0.2 1.6 5.4 12.8 25.0
max predefined 0.3 2.2 7.4 17.5 34.2
mean WCME 28.0 28.0 28.9 32.1 37.2
max WCME 44.2 44.2 44.2 44.2 44.2

Table 1. Motion estimation test using predefined rigid-body verti-
ces and our Weight Compensated Motion Estimation (WCME) ap-
proach. All errors in the table are specified in units of [10−3deg].

4. RECONSTRUCTION OF FACIAL DEFORMATIONS

Before the deformation can be analyzed, the rigid-body motion to
the reference model has to be estimated and afterwards applied to
the current model. Subtraction of the rigid-body motion results in
the desired model deformation which also contains the measurement
noise.
In order to effieciently respresent the vertex deformations caused by
the facial motion, an Eigen vector decomposition of the 3D model
sequence is used. For that purpose, all 3D coordinates are composed
into a single matrix.

The three coordinates of all involved vertices (label visible) are
placed alternatingly in the same column. The same technique is used
for PCA of color images [15], where different color channel values
are placed in the same column. This leads to a matrix A(3N,F ), whe-
re N belongs to the number of usable vertices and F to number of
frames.
Because of the discrepancy between number of models and number
of model vertices, the Eigen vectors are determined from the cova-
riance matrix given by A · AT . Compared to the decomposition of
AT · A, reduced computational power is required, because of the
smaller size, which is three times the number of vertices instead of
the number of frames. Both decompositions require also a different
handling of the eigen vectors during reconstruction.

A(3N,F )
reconstructed = Eigc ·

(
EigT

c · A
)

In this equation, Eigc are the Eigen vectors of the covariance ma-
trix as defined above. Using only a subset of the Eigen vectors will

reconstruct the data set with the smallest MSE compared to other
linear transforms with same number of basis vectors. Thus the de-
formations in the face can be effiently described by a much smal-
ler space. In our setup, the models consist of 127 vertices. Not all
of these vertices are always visible, so that their positions cannot
be specified correctly. Therefore, the maximum number of available
eigen vectors in this scenario is 354.

5. FACIAL MOTION ANALYSIS

In this section, we present the results achieved by analyzing a se-
quence, where a person is counting from one to six.
Extracting the model deformation by subtracting the rigid-body mo-
tion with the first frame model as reference using our WCME ap-
proach provides us with a sequence of model deformations. The re-
sults of this extraction is shown in Fig. 4, where the upper line shows
the Euclidean distance from the reference to the current model. This
Euclidean distance has to be minimized by the rigid-body motion
estimation. The vertical dashed lines represent the beginning of the
spoken numbers. Between two spoken numbers the person tried to
return to the first frame deformation, but an average deformation of
around 0.5 mm remained. One result of the rigid-body motion esti-
mation is that the almost similar performance of our proposed WC-
ME approach compared to a predefined set of rigid-body motion ver-
tices. Another interesting result is the distribution of the deformation

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7
x 10−3

3D model

pe
r v

er
te

x 
rig

id
−b

od
y 

m
ot

io
n 

er
ro

r −
 E

uc
lid

ea
n 

D
is

ta
nc

e 
[m

] no compensation
predefined
WCME

Fig. 3. Average vertex error caused by facial deformation. The dif-
ferent curves refer to different approaches for selecting vertices for
the rigid-body motion estimation.

in a face. This result identifies the level of involvement of specific
facial parts. Such a deformation map is displayed in Fig. 4, where
the level of deformation is expressed as vertex diameter. Please note,
that even the forehead vertices show some deformation. Therefore,
these vertices cannot exclusively be used for the estimation of the
rigid-body motion parameters. Analyzing the reconstruction quali-
ty of the used sequence leads to Tab. 2 which gives us the desired
association between the number of Eigen vectors and the resulting
reconstruction error. Using 3 Eigen vectors leads to an average error
of 0.5 mm whereas 8 Eigen vectors limit the maximum error to the
same value. 23 Eigen vectors correspond to an average error of 0.5
pixels in the original image and 65 vectors are required to reduce the
maximum error to 0.5 mm. Using this table and the visual results,
given in Fig. 5 for a frame model, allows the assumption of a high
benefit for the compression of facial deformations in terms of Eigen
vector linear combinations. The number of Eigen vectors required
for a very good reconstruction can be limited to the first eight Ei-
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Fig. 4. Non-rigid body motion for each 3D model vertex. The circle
located at each vertex describes the non-rigid body motion (high
non-rigid vertex motion is equal to a big diameter of the circle).

reconstruction error [10−3m]
max 3.03 1.56 1.02 0.49 0.23 0.15
mean 0.98 0.62 0.49 0.27 0.15 0.096

No. 1 2 3 8 23 65

Table 2. Reconstruction error: The bottom line depicts the number
of Eigen vectors used for the reconstruction of the 3D model se-
quence. The columns above show the resulting Euclidean distance
to the analyzed data set.

gen vectors, because the maximum reconstruction error using these
Eigen vectors is smaller than 0.5 mm.
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