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ABSTRACT

We present a novel approach to accurately detect landmarks and seg-
ment regions on face meshes without the use of texture, pose or ori-
entation information. The proposed approach is based on a 3D Point
Distribution Model (PDM) that is fitted to the region of interest us-
ing candidate vertices extracted from low-level feature maps. The
robustness of the algorithm is evaluated in the presence of noise and
at the variation of the number of scans and model points used in the
learning phase. Experimental results demonstrate the accuracy of
the proposed method in detecting landmarks, with an improvement
of 55% over a state-of-the-art non-statistical approach.

Index Terms— Region segmentation, 3D feature points, land-
marks, shape model, feature maps.

1. INTRODUCTION

Facial surface scans are increasingly used in applications such as
deformation analysis, animation and face recognition. Many ap-
plications require the accurate localization of feature points on the
scans. When these feature points correspond to specific anthropo-
metric locations on the human face, they are referred to as land-
marks. Landmark detection is used for relating vertices from differ-
ent scans (prior to registration), for generating signatures (for bio-
metrics) and for segmenting regions of interest.

Most existing methods for landmark detection on meshes are
dependent on prior knowledge of feature map thresholds, orienta-
tion and pose [3, 9, 10]. Deformable models such as Active Shape
Models (ASM), Active Appearance Models (AAM) and 3D Mor-
phable Models (3DMM) are extensively used for image segmenta-
tion and landmark detection [4, 8]. The shape model used in these
approaches, called Point Distribution Model (PDM), aims to per-
form image interpretation using prior statistical knowledge of the
shape to be found. In AAMs texture information is also modeled
and associated with the corresponding point locations for model fit-
ting. 3DMM is a concept closely related to AAMs where a 3D model
is used to estimate the 3D parameters in a 2D image and to segment
objects [1, 8]. Although recently the PDM was adapted for 3D vol-
umetric data [5] and reconstruction of 3D meshes [2], to the best of
our knowledge they have not been applied yet for segmentation and
landmark detection on polygonal meshes. This is largely due to the
fact that PDMs are usually used with the associated texture model.
However, texture information is not always available.

In this paper, we propose a robust algorithm for detecting land-
marks on face scans (also referred to as face meshes or 3D faces).
The proposed algorithm uses a PDM to eliminate the need for prior
knowledge of orientation and pose of the scans and relaxes the con-
straints on feature map thresholding. The PDM represents the shape
of the region of interest to be segmented. First, suitable feature maps
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Fig. 1. Block diagram of the proposed algorithm.

that highlight the curvature properties of the mesh are extracted.
Next these maps are used to isolate candidate inner eye and nose
tip vertices. Finally, landmark selection is performed by estimating
the transformation between the model and candidate vertices that
minimizes the deviation from the mean shape (Fig. 1).

The paper is organized as follows: Section 2 describes the pro-
cessing for the segregation of candidate vertices. The creation of the
PDM and the model fitting is described in Section 3. Section 4 dis-
cusses the experimental results and validation. Finally, in Section 5
we draw the conclusions.

2. ISOLATION OF THE CANDIDATE VERTICES

The process for the isolation of the candidate vertices is organized
in two steps. First, low-level feature maps are extracted that give an
indication of the shape and degree of curvature at each vertex of the
mesh. Next, candidate inner eye vertices and nose tip vertices are
isolated using mesh decimation and neighborhood averaging of the
low-level feature maps.

In order to characterize the curvature property of each vertex on
the mesh, two features maps are computed, namely the shape index
and the curvedness index [6]. These features maps are derived based
on the principal curvature values, κ1(.) and κ2(.), at all the vertices
of the surface mesh. The shape index, ρ, at a vertex vi, is defined as

ρ(vi) =
1

2
− 1

π
tan−1

�
κ1(vi) + κ2(vi)

κ1(vi)− κ2(vi)

�
, (1)

where κ1(vi) ≥ κ2(vi); ρ(.) ∈ [0, 1]. The feature map generated
by ρ(.) can describe subtle shape variations from concave to convex
thus providing a continuous scale between salient shapes. However,
ρ(.) does not give an indication of the scale of curvature present
in the shapes. For this reason, an additional feature is introduced,
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Fig. 2. Comparison of feature maps generated with a non-smoothed
surface (left) and smoothed surface (right)

the curvedness of a surface. The curvedness of a surface, γ(.), at a
vertex vi, is defined as

γ(vi) =

�
κ2

1(vi) + κ2
2(vi)

2
. (2)

The low level feature maps are computed after Laplacian smoothing
that reduce outliers arising from the scanning process. A compari-
son between the feature maps generated with a smoothed and non-
smoothed surface scan is shown in Fig. 2.

To reduce the computational overhead through the reduction of
outlier candidate vertices, the original mesh is first decimated. Then
the feature maps are averaged across vertex neighbors according to,

ρ̃(vi) =
1

P

�

p∈P(vi)

ρ(vp), γ̃(vi) =
1

P

�

p∈P(vi)

γ(vp) (3)

where P(vi) is the set of P neighboring vertices of vi.

If γ̃(.) > γs, then vi is in a salient high-curvature region. The
condition ρ̃(.) < ρe identifies concave regions; while ρ̃(.) > ρn

identifies to convex regions. We can therefore segregate by thresh-
olding candidate inner eye vertices from the nose tip ones. The
thresholds γs = 0.8, ρe = 0.2 and ρn = 0.9 were found to be
adequate for the entire database.

Second order neighborhoods for feature averaging and a deci-
mation of 80% was also used. Note that decimation needs to be
done after the extraction of the feature maps, otherwise the resulting
features would not characterise the original surface. Likewise, the
neighborhood averaging of the feature maps is done post decimation.
If it is done before decimation, the consistency of features in a neigh-
bourhood would remain and outlier candidate vertices would not be
eliminated. Note that the smoothed and decimated mesh is only used
for the isolation of the candidate vertices, whereas the original mesh
is used for the detection of the landmarks. Examples of scans with
candidate vertices isolated are shown in Fig 3; regions in green are
candidate nose tip vetices and regions in red are candidate eye tip
vertices.

3. MODEL GENERATION AND FITTING

A PDM is used to represent the shape of the region of interest that in-
cludes the required landmarks, along with statistical information of
the shape variation across the training set. This statistical informa-
tion is used to test candidate positions for the most plausible fit for
the model. With the use of a PDM, we aim to build a parameterized
model, Ω = Υ(b), where b is a vector of parameters. To this end, a
training set of L face scans were manually landmarked with N points
representing the region of interest. Each training shape is a 3×N
element vector, Ω = {ω1, ω2, ..., ωN}, where ωn = (xn, yn, zn)
represents each landmark.

Training shapes are then aligned to the same co-ordinate frame
(registered) so that global transformations are eliminated and sta-
tistical analysis is carried out only on shape variations. We use
procrustes analysis [7] to align the training shapes to their mutual
mean in a least-squares sense, via similarity transformations. This
minimizes D, the sum of distances of each shape Ωk to the mean
Ω = 1

L

�L
k=1 Ωk , i.e D =

�N
i=1 |ωk(i)− ω(i)|2 [4]. At each

iteration, Ω is scaled such that
��Ω
�� = 1. Using PCA, the variations

of the shape cloud formed by the training shapes in the (L× 3×N )
- dimensional space are estimated along the principal axes of the
point cloud. The principal axes and corresponding variations are
represented by the eigenvectors and eigenvalues obtained from the
covariance Z of the data, computed using

Z =
1

L− 1

L�

k=1

(Ωk −Ω)(Ωk −Ω)T . (4)

Let φ contain the t eigenvectors corresponding to the largest
eigenvalues. Then any shape similar to those in the training set can
be approximated using

Ω ≈ Ω + φb (5)

where φ = (φ1|φ2| . . . |φt) and b is a t dimensional vector given
by b = φT (ω − ω). The value of t is chosen such that the model
represents 98% of the shape variance, ignoring the rest as noise.The
vector b defines a set of parameters of the deformable model, which
are used to vary the shape. The mean shape is obtained when all
parameters are set to zero.

The PDM Ω is fitted onto a new mesh Ψi by performing simi-
larity transformations of the model using three control points of the
mean shape, which are the inner eye points (ωr and ωl) and the
nose tip point (ωf ), with {ωr , ωl, ωf } ∈ Ω. Combinations of the
candidate inner eye vertices and candidate nose tip vertices on Ψi

are used as target points to transform the model. Next the remaining
points of Ω are moved to the closest vertices on Ψi. Ω is then pro-
jected back into the model space and the parameters of the model,
b, are updated. Based on this selective search, the transformation
exhibiting the minimum deviation from the mean shape is chosen as
the fit for the model. The steps of the algorithm are summarized in
Algorithm 1. Sample snapshots of the evolution of the model with
different combinations of candidate vertices are shown in Fig. 4

4. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of the proposed al-
gorithm for region segmentation and landmark detection. The land-
mark detection is evaluated at the variation of the number of scans
and number of model points used in learning the model, and with the
addition of white noise. A database with 75 face scans was used for
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(a) (b) (c) (d) (e)

Fig. 3. Comparison of different strategies for detection of candidate vertices: (a) without averaging and decimation, (b) with averaging and
no decimation, (c) with decimation and no averaging, (d) with averaging and then decimation, (e) with decimation and then averaging

(a) (b)

(c) (d)

Fig. 4. Example of evolution of the model Ω during fitting (a)-(d)

Algorithm 1 Global Fitting

E : Set of candidate eye vertices; F : Set of candidate nose vertices
x : number of candidate eye vertices; y : number of candidate nose vertices

C̆Ψ(x): Closest point to x on Ψ

1: for i← 1, x do
2: αr = E(i)
3: for j ← 1, x do
4: αl = E(j)
5: for k ← 1, y do
6: αn = F (k)

7: Estimate Tθ,t,s : minT ← D = |αr − ωr|2+

|αl − ωl|2 + |αn − ωn|2
8: Ώ = Tθ,t,s(Ω)
9: for p← 1, N do

10: ω(p) = C̆Ψ(ώ(p))
11: end for
12: Ω̃ = T−1

θ,t,s(Ω)

13: b = φT (Ω̃−Ω)
14: end for
15: end for
16: end for
Transformation with minimum ν, where ν =

�
i bi is chosen as best fit

Table 1. Landmark detection accuracy error as a function of N ,
with L = 25. (Key: αr , right inner eye; αl, left inner eye;
αor , right outer eye; αol, left outer eye; αn, nose tip)

N αr αl αor αol αn

5 6% 4% 34% 40% 6%

12 2% 2% 28% 28% 0%

22 2% 2% 26% 22% 0%

32 0% 0% 26% 16% 0%

36 0% 0% 22% 14% 0%

the evaluation, with 25 training scans and 50 test scans, all meshes
having roughly 60K vertices.

The PDM is generated by annotating the training set of L scans
(with L=10, 15, 20, 25) with N landmarks (with N=5, 12, 22, 32,
36) representing the eyes, eyebrows and nose regions, and including
5 key landmarks, i.e. outer eye points (αor, αol), inner eye points
(αr, αl) and nose tip point (αn).

To evaluate the model fitting, a ground-truth was generated by
manually annotating the test set with the 5 key landmarks to measure
the error between ground-truth and the corresponding detected land-
marks. To account for different head sizes, the error is normalized by
the distance between αr and αl in each scan. The normalized error
for each landmark is cumulated across the test set and used in the fi-
nal comparison. A detection failure criterion is introduced, wherein
if the distance between a landmark and the ground-truth is larger
than a certain threshold (τP = 0.3), it is deemed to be a failure.

Figure 5 (top) highlights the influence of the size, L, of the train-
ing set on the overall performance; whereas Fig. 5 (middle) shows
the influence of varying the number of model points N. The percent-
age of failed detections is shown in Table 1. From these results, we
can notice that the accuracy improves with the use of a larger training
set L, as more shape variability is captured in the model, without in-
curring in over-training. An improvement is also seen on increasing
the number of model points N, as a better description of the shape
of interest is captured. We restricted the number of model points
to 36, to reduce complexity in computation and manual annotation.
The evaluation of the robustness of the proposed landmark detection
method can be seen in Fig. 5 (bottom). The figure shows the influ-
ence of additive white noise with variance σ. It can be seen that the
algorithm achieves stable detections up to σ = 0.5.

Finally, Fig. 6 (right) shows a visualization of the fitted model
(with N=36) and the corresponding segmented region. A comparison
of the proposed method with a state-of-the-art non-statistical method
replicating [3, 10] is shown in Fig. 7. The landmark detection results
show an overall improvement of 55% in localization accuracy.
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Fig. 5. Normalized distance (error) between automatically detected
landmarks and ground-truth landmarks. (Top) comparison with
varying L (N=32); (middle) comparison with varying N; (bottom)
comparison with additive white noise with variance σ (L=25, N=36)

5. CONCLUSIONS AND FUTURE WORK

We presented a novel method for detecting landmarks on 3D faces
that uses a point distribution model and removes the need for assump-
tions on initial orientation and pose. Candidate control vertices are
detected and used to fit the shape model by minimizing its devia-
tion from the mean shape. The performance of the proposed appr-
oach was evaluated with different parameters, models and number
of training samples. The algorithm shows efficiency in the fitting of
the model and significant improvement over a non-statistical appr-
oach. Current work includes optimization using local neighborhood
constraints (post-fitting) and the validation of the proposed landmark
detection algorithm in biometrics and deformation analysis.
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