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Abstract: This paper presents an original algorithm for 
accurate and stable camera calibration of broadcast tennis 
video (BTV). That frame-data of BTV is often erroneous 
results in wildly fluctuating camera parameters. To meet this 
challenge, we propose a frame grouping technique, which 
groups frames together according to camera viewpoint. We 
then use a group-wise data analysis to obtain more stable 
parameters. Recognizing the fact that some of these 
parameters do vary somewhat even if they have a similar 
camera viewpoint, we further employ a Hough-like search to 
tune them, maximizing the reprojection similarity. This two-
tiered process gains stability of the camera parameters, and 
yet ensures large reprojection similarity via the tuning step. 
The experimental results show that our algorithm is able to 
acquire accurate camera matrix.  

Keywords: Sports Video, Camera Calibration, Group-Wise 
Data Analysis, Hough-like Search.  

1. INTRODUCTION  
In the field of sports video, the topic of camera calibration 
has attracted big attention because camera calibration can be 
used in a wide spectrum of applications such as arbitrary 
view presentation, 3D virtual content insertion [9], semantic 
analysis [7], and computer-aided refereeing [6].  

A camera can be parameterized by both an intrinsic and 
an extrinsic model, which can be calibrated independently or 
simultaneously. The independent calibration generally has 
lighter computation burden, but it may easily cause error 
propagation from the intrinsic model to the extrinsic model. 
Accordingly, most researches focus on integrated methods 
that calibrate the intrinsic and the extrinsic model 
simultaneously. This is often accomplished by minimizing 
different kinds of cost functions, usually emphasizing on the 
reprojection similarity in the image space. Various solutions 
have been proposed, such as those based on gradient descent 
[4], interval analysis [2], etc. Unfortunately, these methods 
generally suffer from poor convergence, susceptibility to 
getting trapped in local extrema, or slow convergence.  
Camera calibration algorithms also differ in whether the 
model considers distortions or not, and in what ways the 
distortions are modeled [8]. Various camera calibration 
techniques are based on planar reference objects [10]. Feature 
points on a plane appearing in different multiple views are 
required for such plane-based calibration method. In 
broadcast tennis video (BTV), however, view changes occur 
within a very small range (less than 15o most of the time).   

There have been several papers which address camera 
calibration in the sports video domain. These algorithms used 
classical calibration techniques as opposed to self-calibration 
techniques [5]. The camera projection matrix is computed via 

solving a set of linear equations [1,6,7]. Such camera 
algorithms face various challenges such as inaccurate and 
incomplete features. In the case of BTV, camera calibration 
algorithms also have to deal with additional characteristics:  

Image features in tennis video span a small spatial 
volume because the two net poles are short. 
Camera recording BTV often pans and zooms, being 
mounted on a tripod. Thus algorithms assuming fixed 
intrinsic parameters cannot be used due to zooming 
changes the intrinsic parameters.  

In this paper, we address these challenges in two phases. 
First, we use a Hough-like search to tune the initial features 
obtained by finding the intersection points of straight lines.  
We further exploit an extra constraint that is available in 
many sports videos, namely, a particular camera’s view of the 
playfield reappears in many frames. We propose a grouping 
technique to leverage on this fact so as to combat against the 
effects of image noises.  The by-product of this grouping is 
that frames with erroneous features are singled out because 
they probably do not belong to any group. The frames in the 
same group share similar values for some of the camera 
parameters, termed as the group-invariant parameters. The 
accuracy of these parameters can be improved by group-wise 
data analysis.  Next, we use Hough-like search to refine some 
of these parameters, as in reality, they vary somewhat even 
though the camera is roughly having the same viewpoint.  By 
adopting this two-phase process, our algorithm achieves both 
stability and accuracy of camera calibration. 

The rest of this paper is organized as follows. Section 2 
presents the proposed algorithm. Section 3 presents the 
experimental results. We conclude the paper in section 4.    

2. CAMERA CALIBRATION ALGORITHM  
This section presents the proposed two-phase algorithm using 
grouping and Hough-like search techniques. It aims to 
acquire accurate and stable camera matrix for each clip. Here, 
a clip refers to a sequence of consecutive frames shot by the 
same camera from a location around the tennis court.     

2.1. Overview of Camera Calibration Algorithm 
2.1.1. Projection Geometry  
Fig 1 shows the Euclidean transformation between the real 
world and the image space for tennis video. The real-world 
point is represented by w, a homogenous 4-vector (X, Y, Z, 
1)T, m for the image point represented by a homogenous 3-
vector (x, y, 1)T, and P for the 3 4 camera projection matrix. 
Then for a pinhole camera, the mapping between the 3D 
world and the 2D image is written compactly as 
                          wm P                                                 (1) 
where  means that two sides can differ by an arbitrary scale. 
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2.1.2. Structure of Camera Calibration Algorithm   
Among 11 camera parameters, some of them are group-
invariant (GI), i.e. they are more or less constant in a group. 
Some are clip-invariant, abbreviated as CI; their values are 
unchanged over the entire video clip. More explanations of 
these terms are given in Section 2.3.3.  

As depicted in Fig 2, the proposed algorithm takes four 
steps to obtain the accurate camera parameters.  The first step 
finds the accurate ground points via a Hough-like search for 
the best matching homography transform (HT) starting from 
the intersections of straight lines. The second step obtains the 

initial camera matrix for each frame. This step first finds the 
two pole-tops via another Hough-like search. Then it 
computes the camera matrix and factorizes the matrix 
computed to obtain the 11 camera parameters for each frame. 
The third step refines the camera matrix computed. It first 
finds the clip-invariant parameters (CI-P) via finding the 
cluster centers of all their instances in a clip. Then it 
classifies all frames into groups according to their lookats and 
focal lengths. Then it obtains a better estimate of the group-
invariant parameters (GI-P) via a group-wise data analysis. 
Except for the camera center, the rest of the group-invariant 
parameters are further refined via another Hough-like search, 
i.e. frame-wise tuning. The frame grouping in the third step 
also singles out frames that are not in any group. The last step 
estimates the camera projection matrices for those frames 
singled out in the third step, according to the values of their 
neighboring frames. Finally except for the CI parameters and 
the camera center, the rest of the estimated parameters are 
further tuned like those in step 3.  

2.2.  Ground-Feature Extraction  
2.2.1. Initial Ground Feature Extraction  
We first use a procedure to segment image court, in which 
only pixels on straight lines consisting of image court are 
kept and all other pixels are painted in court color. Then we 
use Hough transform to find all straight line equations and fit 
the lines detected into the court (wire) model.  Once we have 
fitted the ground model of the tennis court we can find the 
image coordinates of the points C1 to C14 shown in Fig 1 by 
finding the intersection points of the straight lines detected. 
These form our initial ground features.   

2.2.2. Ground Feature Refinement  
Initial Homography: With the ground features extracted, we 
can determine the initial homography H in equation (2), 
which relates a point )1Y, (X,  w  on the ground plane in 
the 3D world to an image point )1(x, y, m .   

              .Hwm                                                       (2)  
Similarity Measure of Two Court Images: Let Cstd and 
Ccom be any two images of the tennis court. We use L1 to L9 
to denote the straight lines as shown in Fig 1.  We use Listd 
and Licom to denote the sets of all the points contained in the 
straight line Li in Cstd and Cimg, respectively for i = 1 to 9.  
The measure function ML(i) of straight line Li is defined as 

       ML(i) = .100
|Li|

|LiLi|

std

comstd                            (3) 

where || is the cardinality of a set.
The measure function Mcot(Cstd, Ccom) for measuring the 

similarity of the two courts is defined as. 

       Mcot(Cstd, Ccom)  = 
9

1
(i)

9
1

i
.                       (4) 

where );((i)Mif(i)M)i( LL threshold  otherwise = 0.   
Measure Function of Homography: Let Cgrd be the ground 
model of the tennis court in the world coordinate system. We 
use Chom(H, Cgrd) to denote the transformed court from the 
ground model of the tennis court onto the image plane 
according to H.  Let Cimg be the segmented court in frame F. 

Fig 2. Block diagram of the proposed camera calibration 
algorithm. The input is a list of clips of broadcast tennis video 
and the output is the camera matrices of all the frames.  
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Fig 1.  The Euclidean transformation between the real world and the 
image space for tennis video. The tennis court in the upper part of the 
figure appears on the plane  in the lower part of the figure. 
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With the two court images Cimg and Chom, we define the 
measure function M1(H, F) for a given H and a frame F as 

         M1(H, F) =   Mcot(Chom, Cimg).                       (5) 
Homography Tuning:  The following tuning procedure 
(Procedure 1) will significantly improve the match value. Let 
H0 be the initial homography of the frame F. Then we prepare 
a small Hough space Hsp enclosing it. We compute M1(H, F) 
for all H in Hsp and adopt the best homography.    

                     Procedure 1 
Step 0:  Input initial homography H0 and segmented court.  
Step 1:  Form the Hough space Hsp enclosing H0; 
Step 2:  Initialize Vmax = M1(H0, F);   Htd = H0; 
             For all H in Hsp do  

           If  M1(H, F) > Vmax,  then Vmax = M1(H, F);  Htd = H . 
Terminate and output Htd. 

Ground Feature Computation: Once we have obtained the 
best homography Hf for a frame F we re-compute all of the 
14 ground features using Hf  according to equation (2). 

2.3. Camera Matrix Computation 
2.3.1.  Pole-Top Extraction 
Here we aim to find the image coordinates of the two pole-
tops to sub-pixel accuracy. Let (xg1, yg1) and (xg2, yg2) be the 
coordinates of G1 and G2 in a frame F, where G1 and G2 are 
the ground points of two poles.  Let (Xg1, Yg1, 0) and (Xg2, 
Yg2, 0) be the coordinates of G1 and G2  in the 3D world.  
We define wg1 = (Xg1, Yg1, 1) and wg2 = (Xg2, Yg2, 1). Let HF 
be the homography obtained in section 2.2. Then the formula 

gi.gigigigigigiFgigigi K/Jy,K/Ix,H)K ,J ,(I w (i= 
1, 2) is used to obtain their corresponding image positions.  
     Once we have computed (xg1, yg1) and (xg2, yg2), we can 
search for the two pole-tops L and R along the vertical poles 
in the image.  Let L0 = (xg1, y0

g1) and R0 = (xg2, y0
g2) be the 

coordinates of the two extracted pole-tops in the image, being 
used as initial coordinates of the pole-tops in the following 
tuning procedure.  
       
2.3.2.  Pole-Top Tuning  
Measure Function for Camera Matrix: Let Cphy be the 
complete model of the tennis court that includes both the 
ground model and the two net poles. We use Cpjd(P, Cphy) to 
denote the projected court from Cphy via P according to 
equation (1). P will be computed based on {C1, C2, …, C14} 

 {L, R} (see next subsection). With the obtained P, we can 
formulate, for a given image F, the measure function M2(L, 
R, F) to  tune the coordinates of the pole tops. 
       M2(L, R, F)= Mcot(Cpjd, Cimg).                            (6) 

Based on the initial coordinates of the pole-tops, we 
create a Hough space Hpole  = { (C1, C2, …, C14)  (x'G1, 
y0

G1+ )  (x'G2, y0
G2+ ), with  and   varying from -2 to 2 

pixels in a step size of 0.01}. Then we use the following 
Procedure 2 to find the best coordinates of the two pole-tops 
in subpixel accuracy.                     

Procedure 2 
Step 0:  Input initial coordinates L0 and R0 and segmented court.  
Step 1:  Form the Hough space Hpole; 
Step 2:  Initialize Vmax = M2(L0, R0, F);  Ltd= L0 and Ltd= L0; 
              For all L and R in Hpole do  

If  M2(L, R, F) > Vmax,  then Vmax = M2(L, R, F);   Ltd= L 
and Rtd= R. 

        Terminate and output Ltd and Rtd. 
 
2.3.3. Camera Matrix Factorization 
From wm P  (see section 2.1), we can solve for P using the 
direct linear transform method [4]. Next, to obtain the 
intrinsic and the extrinsic parameters, the projection matrix P 
can be factorized as     
               P = KR[I  |  -C].                                       (7) 
where I, K and R are identity, calibration, and matrixes 
respectively, and C is the camera center. K is an upper 
triangular matrix encoding the intrinsic parameters: 

                  K= 
100

0 0

0
vf
usf

.                                 (8) 

where f is focal length,  aspect ratio, s skew factor, and (u0, 
v0) coordinates of the principal point.   
   
2.4. Camera Matrix Refinement 
The frames sharing the same lookat and focal length are 
gathered in a group and they should have the same focal 
length f, principal point (u0, v0), camera center C, and the 
three angles for rotation ( x , y  and z ). These parameters 
form the group-invariant parameters. The remaining two 
parameters, namely the aspect ratio  and the skew factor s 
are clip-invariant, particularly s=0. Note that we allowed the 
principal point (u0, v0) and the camera center C to vary with f, 
and they are thus not clip-invariant. 

2.4.1. Frame Grouping   
In broadcast tennis video (BTV), the lookat of a frame is 
usually some point on the court ground. Thus, its position in 
the world coordinate system can be computed by the 
homography obtained in Section 2.2.2. More exactly, the 
homography from the image space to the 3D world space is 
given by:  
           w = Htrw m                                                      (9) 
where Htrw =H-1. Let   mctr = (w/2, h/2, 1) where (w/2, h/2) is 
the image center. Then Htrw mctr is the lookat of the frame. 
The focal length of the frame is obtained by factorizing the 
camera projection matrix as shown in equation (8).   

2.4.2. Clip- and Group-Invariant Parameter Computation 
Clip-invariant parameters: Since the aspect ratio  is 
constant in a clip, we find  via gathering all their instances in 
a video clip and obtain their cluster centers.   
Group-invariant parameters: To realize the Hough-like 
tuning of camera matrix, we define a measure function based 
on the 11 straight lines, that is, the nine ground lines and the 
two poles. The measure function M3(P, F) for the camera 
projection matrix P is defined as 

     M3 (P, F) = 
11

1
(i)

11
1

i
                                   (10) 

where )i(  is the function defined in equation (4) and )10(  
and  )11( are for the left and the right poles.            
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Tuning Procedure: For a frame F, let the camera projection 
matrix computed from its feature points be denoted by Pf. 
Then the initial camera projection matrix P0 is produced by 
replacing the group-invariant parameters of Pf with the 
corresponding ones of the group’s cluster center. We use 
Procedure 3 to tune P0.   The Hough space Htune centered at 
P0 with the group-invariant parameters varying in a given 
step size around the center. We compute M3(P, F) for all P in 
Htune and choose the best camera projection matrix.   

Procedure 3 
Step 0: Input initial camera matrix P0 and segmented court.  
Step 1:  Form the Hough space Htune based on P0. 
Step 2:  Initialize Vmax = M3(P0, F);   Ptd= P0. 
             For all P in Htune do  
                   If  M3(P, F) > Vmax,  then Vmax = M3(P, F);  Ptd = P. 
            Terminate and output Ptd. 

3. EXPERIMENTAL RESULTS  
We compare the developed algorithm in this paper (shorted 
as ours) with Tsai’s algorithm presented in [8] (shorted as 
Tsai’s) in re-projection accuracy and stability on six clips of 
an mpeg2 video with resolution 704 576 recorded by a 
Panasonic DVD recorder from TV signal.  More evaluations 
and applications of our algorithm are presented in another 
paper of ours [9].  
 
3.1. Comparison on Re-projection Accuracy    
We use the function defined in equation (10) to measure the 
re-projection similarity. We test our and Tsai’s algorithms on 
six clips and the results are given in Table 1. Table 1 shows 
that our algorithm is above 10% better than Tsai’s in re-
projection similarity.   

Table 1. Comparison on projection similarity between our algorithm 
and Tsai’s algorithm.  

clip 1 2 3 4 5 6 
Ours 0.7533 0.726 0.7219 0.7354 0.7598 0.7661 
Tsai’s 0.6266 0.645 0.6453 0.5337 0.6733 0.5921 
%  16.819 11.166 10.611 27.427 11.385 22.712 

  
3.2. Comparison on Stability of Camera Parameters 
For broadcast tennis video (BTV), we assume that is 
constant and s=0 (see equations 7-8). Among the remaining 
parameters, our concern mainly are the camera center 
(shorted as CC) and focus length f. Table 2 gives the average 
of fluctuations of CC, f, (u0,v0) and angles of our and Tsai’s 
algorithms (fluctuation is the difference of two values of the 
same parameters and it is used to measure the stability of 
parameters [3]). Table 2 shows that for the fluctuations of 
CC ours are at most 16.6% of Tsai’s and that for the 
fluctuations of f ours are at most 18.2% of Tsai’s. As for 
fluctuations of (u0,v0) and angles, no algorithm is uniformly 
better than the other. According to our experiments, Tsai’s 
algorithm is very accurate as a general algorithm. However, 
our algorithm can outperform it for BTV since we use 
techniques of frame grouping and Hough-like search. It is 
important that Hough-like search can work with sophisticated 
measure function. 

Table 2.    Comparison on stablity b/w our and Tsai’s algorithms.  

 clip 1 2 3 4 5 6  
Tsai’s 42.14 11.62 49.49 7.362 65.20 13.58 
Ours 2.964 0.904 0.463 0.174 0.807 2.25 

 
   CC 

ratio 7.03% 7.78% 0.94% 2.36% 1.24% 16.6% 
Tsai’s 65.27 30.39 52.24 20.46 104.5 35.25 
Ours 5.562 4.009 2.554 0.796 5.169 6.427 

 

     f 
 ratio 8.52% 13.2% 4.89% 3.89% 4.94% 18.2% 
Tsai’s 2.113 2.351 4.719 1.464 2.040 2.169 

u0 & v0 Ours 1.655 1.011 1.242 0.218 1.009 2.682 
Tsai’s 0.171 0.013 0.039 0.008 0.171 0.017 

angles 
Ours 0.408 0.420 0.003 0.001 0.408 0.438 

 

4. CONCLUSIONS AND FUTURE WORK 
We have presented an original camera calibration algorithm 
which can acquire accuracy and stability camera parameters 
for broadcast tennis video (BTV). It uses two techniques: 
frame grouping and Hough-like search. The grouping 
technique helps to acquire more stable and accurate camera 
parameters with the by-product that the frames with 
erroneous features are singled out. A Hough-like search then 
tunes some parameters. Comparisons with Tsai’s confirm the 
merits of our algorithm.        

Two of many other future jobs remain to be done. For 
camera calibration, we want to extend our technique to other 
types of sports videos such as soccer, badminton, etc.  For 
application, we want to use the results of camera calibration 
to aid the video analysis and video enhancement.  
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