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ABSTRACT

This paper introduces a new denoising technique that consists

in recovering the image using a filtering function adapted to

the image content. The definition of such a function relies on

the computation of similarity between pixels of a given neigh-

borhood. Our contribution consists in the definition of a new

similarity criterion which is more robust to noise. This mea-

sure is computed from a dictionary that is adapted to image

content. The projection of the image content to this subspace

are used then to define a metric between a pixel and the neigh-

borhood ones. Very promising experimental results show the

potential of our approach.

Index Terms— Neighborhood filtering, Principle Com-

ponent Analysis, similarity measure, Non Local Means

1. INTRODUCTION

Natural image denoising is still a challenging and open prob-

lem in image processing in particular when dealing with rich

content like texture. State of the art techniques in image en-

hancement refer to global methods and local ones. Global

approaches represent images through a set of invertible trans-

formations [1, 2] or a specific designed dictionary. Noise

reduction is achieved through the modification of the coeffi-

cients with limited importance in the reconstruction process.

Despite their performance, these techniques are strongly de-

pendent on the choice of decomposition basis. In the most

general case, finding an optimal one for all natural images is

not trivial.

Approaches based on total variation minimization [3], or

partial differential equations [4] are efficient tools in image

regularization field. Nevertheless, these approaches are based

on a local smoothness hypothesis and quite often fail to pre-

serve texture. In order to address this problem, separating

structure from texture is the most prominent technique to deal

with such limitation and has gained significant attention in the

past years [5]. However, these methods fail to separate noise

from texture because like noise, texture is an oscillatory pat-

tern. Further more, these models are complex and rely on data

fidelity term that cannot be computed directly and can be only

approximated.

Filtering approaches that do not make specific assumption on

noise model rely on a weighted mean based estimation of the

noise free image. The weights definition is dependent on the

similarity between pixels. This similarity is defined accord-

ing to the spatial and photometric distance between pixel in

the case of bilateral filter [6], or a distance between local im-

age patches [7, 8, 9, 10]. One has to point out that these al-

gorithms are based on a distance computation between noisy

observations which reduces their robustness.

In the present paper, we propose a novel filtering method

that exploits a new definition of similarity between pixels. A

pixel will be represented with a set of coefficients that corre-

sponds to the projection of its local neighborhood on an ap-

propriate dictionary adapted to the image content. To this end

we build a compact dictionary of local image content using

principal component analysis.

The paper is organized in the following fashion: in section

2 we present our denoising technique, while the next section

will be devoted to the validation of the method and the com-

parison results. Finally, we will conclude in section 4.

2. IMAGE DENOISING BASED ON
NEIGHBORHOOD FILTERING

Image denoising based on neighborhood filter is a quite stan-

dard technique. It refers to restoring a pixel taking a weighted

average of the neighboring pixels. Such a filtering can be ex-

pressed as:

Û(x) =
1

Nh(x)

∫∫
Rx

h(x, y)U(y)dy (1)

where U is the noisy image, Nh(x) is the normalization con-

stant defined as Nh(x) =
∫∫

Rx
h(x, y)dy, Û is the recon-

structed image and Rx is a local neighborhood associated to

x. The filtering function h is a monotonically decreasing and

depends on the photometric distance between the pixel x and

its neighbor. In fact, samples that have similar content to x
will have a strong contribution in the gray level estimation.

The main focus of our work, is to propose an adaptive filter-

ing function h using a more appropriate distance to account

for the image content while being more robust to noise.
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2.1. Image Dictionary Computation

To evaluate a similarity between pixels one has to define a set

of features (e.g. image intensities), and an appropriate met-

ric in the space of these features. The most common feature

space is the image itself, while the L-1 and the L-2 norms

have been frequently considered. In [7], authors suggest as a

feature vector the intensity values within a local patch around

the pixel. The corresponding definition of the filtering func-

tion is

h(x, y) = exp−‖ux − uy‖L2

2σ2

where ux is a vector of dimension p and related to a defin-

ition of a local neighborhood Nx (of size p) and expressed

as ux = {U(y) such that y ∈ Nx}. σ is a parameter that is

fixed according to the noise level.

Such a definition of a set of features is not able to pre-

serve image texture. In fact, this pixel characterization is very

simple and thus not robust to noise. Furthermore, it does not

incorporate image structure at local neighborhood. To over-

come this limitation, one needs a feature vector definition that

better describes the data structure on one hand and is not sen-

sitive to noise on the other hand.

Image decomposition in subspaces, like wavelets, Fourier,

etc. reduce the dimensionality of the problem and often asso-

ciate noise to the least important components. The central

idea of our approach is to decompose image content into a

dynamic dictionary, or a subspace and then use this subspace

(in particular the projection of the image patch to the base) to

define a metric. One can claim that such an image represen-

tation will remove certain amount of the noise, that is critical

when determining similarities between observations of neigh-

borhood pixels.

Several image filters can be used to perform local features

extraction of the image. For simplicity, we consider princi-

ple component analysis (PCA) which is a powerful tool that

provides a compact representation of the most prominent ele-

ment in the image. Such a representation can be considered as

a set of filters adapted to image content. This technique per-

forms image decomposition on an orthonormal basis where

each component is relative to a group of image features. Thus,

the most prominent vectors allows the extraction of smooth

image content as well as texture and edges. The remaining

components which are related to a small variation in the im-

age emphasize the noise component. In this paper, we will

take advantage of the PCA decomposition to compute a new

feature vector. In the following we will explain in details how

we perform the PCA to obtain such a decomposition.

If we consider the set of vectors ux that correspond to the

set of observations, the new orthonormal basis obtained us-

ing a PCA corresponds to the eigenvectors of the correlation

matrix defined as

Cr(i, j) = corr(Vi, Vj)

Fig. 1. Eigenvectors obtained through PCA decomposition of

barbara image corrupted by Gaussian noise (σn = 10) (patch

size 25× 25)

(a) (b) (c)

Fig. 2. (a) Projection of the observations set on the first eigen-

vector of barbara image (b) Projection of the observation set

on the 17th eigenvector (c) Projection of the observations set

on the Last eigenvector (49th)

Vi = [u1(i), u2(i) . . . uN (i)] 1 ≤ i ≤ p

The eigenvalue associated to a given eigenvector can be in-

terpreted as the variance of the projection of the observation

set on this vector. In the remainder of the paper, we will note

(e1, e2, . . . ep) the new orthonormal basis of the eigenvectors

associated to the eigenvalues (λ1 ≥ λ2 ≥ . . . ≥ λp) of the

matrix Cr. The eigenvectors can be interpreted as a dictio-

nary where the elements correspond to image characteristics

(cf figure [Fig.(1)]). The projection of the set of observations

(ux)1≤x≤N on each vector on the new basis is equivalent to a

correlation between an image patch around x and an element

of the dictionary learned using PCA. The projection on some

principle components is illustrated in figure [Fig.(2-a),Fig.(2-

b),Fig.(2-c)]. We can notice that the first principle component

acts as a low pass filter that captures all smooth contents of

the image. The projection on other components extracts the

texture and small details in the image. It’s important also to

point out that vectors associated to small eigenvalues that are

close to the noise variance emphasize the random component

introduced by noise.

2.2. The image filtering

We define in this section the new filtering function using the

projection of the vectors (ux)x=1...N on the PCA basis. To

this end, we compute the distance between observations in a

sub-space of the space induced by the eigenvector basis. We

specify that after projection, the noise variance (σ2
n) remains
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constant while the variance of observation changes accord-

ing to projection direction. In our algorithm, we will con-

sider only the vector that consists of observations that have

more important variance than the noise one. Taking into con-

sideration that λ1 ≥ λ2 ≥ . . . ≥ λp, we will restrain our

selves to the subspace (noted Eq) generated by the first q vec-

tor (el)1≤l≤q such that λl ≥ σn. In fact, as shown in figure

[Fig.(2-c)], vectors with small eigenvalues correspond to the

noisy component of the image and do not contain information

about image structure. Under these considerations, we will

measure the similarity between pixels in the new subspace

(Eq) of dimension q ≤ p. Thus, if we note vx the projected

vector of ux on Eq (inner product between the eigen vector

and the image patch), the new definition of h is

h(x, y) = exp−‖vx − vy‖L2

2σ2

In the following section, we propose an experimental valida-

tion of our approach and we give a comparison with state of

the art methods.

3. EXPERIMENTAL RESULTS

Toward objective validation of our method, we have used nat-

ural images corrupted by an additive white Gaussian noise

(σn=20 and σn=10) as well as digital images corrupted by

real camera noise. We compared our approach to well known

filtering techniques such as the bilateral filter [6], the Non Lo-

cal Mean approach [7], the total variation [3] and the anisotropic

diffusion [4] using an edge stopping function of the type (1+
|∇I|2 /K2)−1. The parameters of the considered methods

were tuned to get a good balance between texture preservation

and noise suppression as well as the highest possible PSNR

value. We specify that for our method we considered the fol-

lowing parameters for all experiments p = 5× 5, σ = 15 for

σn=20 (σ = 9 for σn=10) and a rectangular window of size

7× 7 for Rx.

As far as subjective criteria are concerned, we adopt the

whole aspect of the image in term of noise suppression and

small detail preservation. Visual comparison results of de-

noising [Fig.(3),Fig.(4)] show that our denoising method out-

performs the other ones. For comparison, we also consid-

ered the ”noise image” which is the difference between the

noisy image and the restored one. Figure [Fig.(5)] shows that

our ”noise image” does not contain structures and details con-

trarily to the other ones. In [Fig.4] a zoom on a textured re-

gion in barbara image as well as the result obtained with our

method and the NL-means algorithm are shown. It is clear

that our method ensures a better reconstruction of texture than

the NLmean algorithm.

When considering real digital camera noise with an un-

known noise model, we conclude that, as shown figure [Fig.(6)],

better reconstruction is obtained when similarity between pix-

els is computed using the new vector basis introduced by the

(a) (b) (c)

Fig. 3. (a) Noisy Image (b) Image filtered with our method ,

(c) Image filtering using NLmean

(a) (b)

Fig. 4. (a) Zoom on a resulting image obtained with our

method (d) Zoom on a resulting image obtained with NLmean

PCA. The NLmean algorithm deteriorates the skin texture in

the image.
As far as a quantitative validation is concerned we used

the Peak Signal to Noise Ratio criterion defined by

PSNR = 10log10
2552

MSE
MSE =

1

‖Ω‖
�

x∈Ω

(U(x)− Û(x))2

Table (1) confirms the subjective results and show that our

method has better performances then the other state of the art

methods. In addition, we have to point out that our approach

is faster then the classical NLmean because we use only a

smaller number of features then the NLmean to compute the

distance between patches.

In our validation experiments we studied also the impact

of the choice of the parameter q which corresponds to the

number of the principle components retained while comput-

ing pixel similarity. The curve in figure [Fig.(7)] shows that

(a) (b) (c)

Fig. 5. Zoom on the ”noise image” obtained with the differ-

ent methods: (a) bilateral filter (b) Non local mean (c) Our

approach
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barbara Boat FingerPrint House Lena baboon

σn 20 10 20 10 20 10 20 10 20 10 20 10

TV 26.18 29.60 27.72 32.17 26.08 30.65 28.43 33.86 28.45 33.83 25.18 -

AD 26.45 30.85 28.06 31.92 24.81 29.02 29.41 33.72 29.27 33.36 23.68 -

Bilateral 26.75 31.05 27.82 31.52 24.12 28.81 29.18 33.40 29.28 33.01 24.95 29.31

NLmean 28.78 32.96 28.92 32.49 26.45 30.60 30.86 34.66 31.13 34.65 25.18 29.54

ACP+Convol 29.99 33.33 29.72 32.61 27.14 30.67 32.04 34.87 31.97 34.84 26.11 29.77

Table 1. PSNR values for denoised image corrupted by additive Gaussian noise (The PSNR of the original noisy image is 22.15

for σn=20 and 28.11 for σn=10)

(a)

(b) (c)

Fig. 6. Results for real digital camera noise (a) Noisy image

(b) Image restored using our algorithm (c) Image restored us-

ing NLmean

Fig. 7. Evolution of the SNR corresponding to noisy barbara

image (σn = 10) according to the parameter q where 1 ≤ q ≤
49

the performance of denoising depends on the number of com-

ponents involved in feature vector computation. One can claim

that considering few principal directions is not sufficient to in-

corporate local image information in pixel characteristics vec-

tor. On the other hand, considering an important number of

projection direction will introduce noise content on the obser-

vations. Consequently, the accuracy of the similarity compu-

tation will be decreased. The optimal value was obtained for

q = 35 which corresponds to the eigenvalue λq that verifies

λl ≥ σn for l ≤ q.

4. CONCLUSION

In this paper we have presented a novel, simple, efficient and
robust approach toward image denoising. Our main contri-
bution consists of defining a similarity metric between im-

age observations where noise has been eliminated leading to
a more appropriate selection of pixels and weights contribut-
ing to the reconstruction process. To this end, an adaptive
image basis is built (local content), and the projection of the
observation space to this basis is used to determine content
similarities. Experimental results show the potential of our
method mainly in terms of texture and small detail preserv-
ing. A future direction is to improve the algorithm is to adapt
the spatial bandwidth of the kernel to image content. In other
words, information on texture at local scale must be taken into
consideration for better reconstruction.
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