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ABSTRACT
This paper presents a filter bank (FB) analysis of parallel Magnetic
Resonance Imaging (pMRI). The underlying image reconstruction
strategies of the most widely used pMRI reconstruction methods are
unified within the framework and their fundamental perfect recon-
struction (PR) constraints are analyzed. Based on this analysis, an
improved reconstruction method, calledH∞ optimal SENSE, is de-
veloped and its advantage is demonstrated by an example.

Index Terms— MRI, pMRI, FB,H∞ optimization

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) plays a major role in clinical di-
agnoses and medical research. The recent development in pMRI has
attracted a great attention in many research disciplines. pMRI is a
technique that uses multiple receiver coils to pick up the excited MR
signal and then processes it digitally to reconstruct images. Hence,
image reconstruction from the multiple-coil received signals is a ma-
jor issue in pMRI and has been an active research topic in MRI field
since early 1990’s. A number of pMRI reconstruction methods have
been developed and used in practice. Among these, SENSE, PILS,
SMASH and GRAPPA [1, 2, 3, 4] are the most widely used ones in
practice and have been examined in [5, 6, 7] for their intrinsic links
and differences.

This paper gives a thorough FB analysis of pMRI reconstruc-
tion. Although such attempt is initially made in [8], the FB descrip-
tion there is confined in SENSE method and does not encompass the
more complicated k-space methods, SMASH and GRAPPA. This pa-
per casts all of the aforementioned methods into the FB framework,
and more importantly, analyzed their fundamental PR constraints.
These constraints explain the major source of reconstruction arti-
facts and lay a foundation for further improvements. Furthermore,
this paper employs cyclic FB system instead of normal FB adopted
in [8] which does not reflect the fact that real pMRI system can use
only finite length DFT. Based on the analysis and H∞ norm opti-
mization theory, a new reconstruction method,H∞ optimal SENSE,
is proposed. The advantage of proposed method is demonstrated by
an example.

2. THE FILTER BANK DESCRIPTION OF PARALLELMRI

In order to obtain the FB analysis of pMRI, we begin with the intrin-
sic encoding process of an MRI with multiple receiver coils. For a
Fourier encoded L-coil array, the k-space data received at each l-th
receiver of the array is given by

sl(k) =

∫∫
ROI

Cl(r)P (r)ej2πk·rdr. (1)

In the above equation, ROI denotes the region of interests in 2D
image domain, P (r) is the excited spin density function with r =
(x, y) denoting the 2D spatial position, sl(k) represents the encoded
k-space with k = (kx, ky) denoting the 2D frequencies, Cl(r) rep-
resents the spatial sensitivity function of the l-th coil, and Cl(r),
P (r), sl(k) are all complex valued. In the case of Fourier Cartesian
imaging with phase encoding along y direction, the above equation
can be expressed as (see e.g. [6])

sl(k) =

N−1∑
n=0

Cl(n)P (n)W kn
N , 0 ≤ k ≤ N − 1, (2)

which is the discretized version of (1) with WN = ej 2π

N . In (2), k
is the k-space sampling index from 0 to N − 1 along y direction,
and n is the image domain sampling index from 0 to N − 1 along
y direction and covers the entire ROI. Note (2) repeats for each x
due to the separability of the Cartesian sampling coordinates. The
above equations have presented a single receiver in pMRI without
accelerated imaging, where sl(k) are generated and sampled at each
k. When accelerated imaging is employed, the system generates
only

sl(Mk) =
N−1∑
n=0

Cl(n)P (n)W Mkn
N , 0 ≤ k ≤

N

M
− 1, (3)

which is acquired from each receiver coil. This is equivalent to anM
fold downsampling of sl(k). The M here is called the accelerating
factor and assumed to be a factor of N . The period of sl(Mk) is
K = N

M
. The above equation can be translated to image domain by

takingK-point DFT of (3) to give

Sl(n) =
1

M

M−1∑
m=0

Cl(n+mK)P (n+mK), 0 ≤ n ≤ K−1, (4)

where Sl(n) is the K-point DFT of sl(Mk) given by Sl(n) =
1
K

∑K−1
k=0 sl(Mk)W−kn

K . Eq (3) can also be written as the cyclic
convolution in k-space

sl(Mk) = cl(k) � ρ(k) ↓M , (5)

where ρ(k) and cl(k) are respectively the N -point inverse DFT,
and � denotes the cyclic convolution with all arguments interpreted
modulo K. According to [9], (4) and (5) define an L-channel cyclic
FB system.

From above discussion, it can be seen that the multichannel sub-
band signal sl(k)s or Sl(n)s are generated by passing the excited
MR signal through a bank of L filters consisting of coil sensitiv-
ity functions and then downsampled by a factor of M . In practice,
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L ≥ M , thus, it is an oversampled FB with uniform decimation.
Apparently, the image reconstruction in pMRI is equivalent to the
signal reconstruction in a cyclic FB. It is well known that the sig-
nal reconstruction in such FB [9] can be done either in image do-
main using the Aliasing Component (AC) matrices or in k-space
using the polyphase matrices. According to (4), the analysis AC
matrix is in the form, C(n) = [Cij(n)] := [Ci(n + jK)], i =
0, 1, · · · , L − 1, j = 0, 1, · · · , M − 1, and F(n) is the synthesis
AC matrix of the form F(n) = [Fij(n)] := [Fj(n + iK)], i =
0, 1, · · · , M − 1, j = 0, 1, · · · , L − 1. Denote E(n) and H(n)
as the analysis and synthesis polyphase matrices, respectively, with
E(n) = [Eij(n)], i = 0, 1, · · · , L − 1, j = 0, 1, · · · , M − 1 and
H(n) = [Hij(n)], i = 0, 1, · · · , M−1, j = 0, 1, · · · , L−1. Then,
according to [9], E(n) is given by

E(n) = C(n)WΛ, (6)

where Λ = diag{1, W n
N , · · · , W

(M−1)n
N } and W is the M × M

DFT matrix .
The AC matrix approach, which is often called the frequency

domain (image domain in pMRI case) method, reconstructs P̂ (n)
using

P̂(n) = F(n)S(n), 0 ≤ n ≤ K − 1, (7)

where P̂(n) := [P̂ (n), P̂ (n + K), · · · , P̂ (n + (M − 1)K)]T is
blocked version of P̂ (n) andS(n) := [S0(n), S1(n), · · · , SL−1(n)]T .
The polyphase matrix approach, which is often called the time/spatial
domain (k-space) method, constructs ρ̂(k) using

p̂(Mk) = H(n)s(Mk), 0 ≤ k ≤ K − 1, (8)

where p̂(Mk) := [ρ̂(Mk), ρ̂(Mk− 1), · · · , ρ̂(Mk− (M − 1))]T ,
and s(Mk) := [s1(Mk), s2(Mk), · · · , sL(Mk)]T . Note that Eq.
(8) has followed the convention in the FB literature [9] to represent
cl(k) � ρ(k) with Cl(n)ρ(k).

The PR conditions for the polyphase and the AC matrix repre-
sentations are respectively

H(n)E(n) = IM , (9)

F(n)C(n) = IM . (10)

The matrix form PR condition (10) can also be written equivalently
as

1

M

L−1∑
l=0

Fl(n + iK)Cl(n + jK) =

{
1, i = j
0, i �= j

, (11)

which gives explicitly the relationship of AC matrix elements to the
reconstruction distortion and the aliasing.

The above PR conditions are in terms of either the polyphase
matrices H(n) and E(n) or the AC matrix F(n) and C(n). Using
(6) and (9), these conditions can also be represented in terms of the
polyphase matrix and AC matrix as given below

H(n)[C0(n), · · · , CL−1(n)]T = [1, · · · , W
−(M−1)n
N ]T (12)

Aiming to reconstruct ρ(k) from sl(k)s or P (n) from Sl(n)s,
four widely used methods have been developed since 1997. As
shown in next section, despite their different origins, all these meth-
ods can be unified within the filter bank framework.

3. FB ANALYSIS OF EXISTING RECONSTRUCTION
METHODS

This section will cast the underlying image reconstruction strategies
of SENSE, PILS, SMASH and GRAPPA into the problem of finding
the synthesis FB to achieve PR under certain conditions. As can be
seen, these methods are essentially obtained from different assump-
tions on the analysis or synthesis FBs.

3.1. SENSE and PILS methods

SENSE [2] is an AC matrix based method operating in the image
domain. It obtains the synthesis FB by inverting the ACmatrixC(n)
which is called unfolding matrix in [2]. From (10), one may simply
use the left pseudo (least squares) inverse on C(n), which yields

F(n) = (CH(n)C(n))−1
C

H(n). (13)

With the above F(n), the reconstructed output can be obtained by
(7), ie, P̂(n) = F(n)S(n).

Eq. (13) is the core of SENSE method. Note that Eq. (13) is ap-
plicable only when C(n) has full column rank [10]. This condition
normally holds for pMRI systems because Cl(n)s are designed to
look at different regions of the object, which gives linearly indepen-
dent Cl(n)s. Note also that the F(n) obtained from (13) is generally
a noncausal and IIR transfer matrix even ifC(n) is FIR, see [10] for
details.

PILS method [3] is a special case of SENSE reconstruction. It
assumes that each Cl(n) has an ideal localized sensitivity function

Cl(n + l
N

L
) =

{
non-zero, 0 ≤ n ≤ N

L

0, otherwise . (14)

Here N
L
is assumed to be an integer and N

L
≤ K since L ≥ M .

Substituting such a Cl(n) into (11), we can see that the aliasing free
condition is automatically satisfied as long as Fl(n) is also strictly
bandlimited as Cl(n). Therefore, Fl(n) can be simply chosen as

Fl(n + l
N

L
) =

{
Cl(n + l N

L
)−1, 0 ≤ n ≤ N

L
− 1

0, otherwise (15)

and the image reconstructed by PILS can be obtained by

P̂ (n + l
N

L
) = Fl(n + l

N

L
)Sl(n), 0 ≤ n ≤

N

L
− 1. (16)

PILS avoids the AC matrix inversion which can be very prob-
lematic when the condition number (known as the g-factor for SENSE
method) of the AC matrix is poor in SENSE reconstruction. Note
that because PILS does not allow any subband overlapping, it is es-
sentially a critically sampled FB and cannot take the advantage of
oversampled FB to improve SNR.

3.2. SMASH and GRAPPA methods

SMASH [1] is a polyphase matrix based method operating in the
k-space. It reconstructs ρ̂(k) using

ρ̂(Mk −m) =

L−1∑
l=0

hmlsl(Mk), m = 0, 1, · · · , M − 1, (17)

where hml are the complex coefficients satisfying the constraint

L−1∑
l=0

hmlCl(n) = W−mn
N , m = 0, 1, · · · , M − 1. (18)
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BecauseWN = ej 2π

N , (18) is often referred to as harmonic fitting in
the MRI literature, with m being called the order of the harmonics
and hml the fitting coefficients [1]. Define

H0 := [hml], m = 0, 1, · · · , M − 1, l = 0, 1, · · · , L− 1. (19)

Then (17) and (18) can be written respectively in the matrix form

p̂(Mk) = H0s(Mk) (20)

and

H0[C0(n), · · · , CL−1(n)]T = [1, · · ·W
−(M−1)n
N ]T . (21)

Apparently, (20) and (21) are a special case of the polyphase based
signal reconstruction formula (8) and the PR condition (12), where
the synthesis polyphase matrix H(n) is chosen as a constant com-
plex matrixH(n) = H0. In FB terms, SMASH assumes that there
exists a constant synthesis matrixH0 = H(n) such that the PR con-
dition (12) holds. It obtains this H0 by solving (21) and uses it in
(20) to reconstruct p̂(Mk).

Similar to SENSE and PILS, SMASH also requires the explicit
knowledge of Cl(n)s in (21) for solving H0. To avoid this require-
ment, the AUTO-SMASH [11] has been developed to allow direct
estimation ofH0 during imaging process. AUTO-SMASH assumes
thatH0 satisfies the constraint

h0l = 1, 0 ≤ l ≤ L− 1. (22)

Under this constraint, the first equality in (17) for m = 0 becomes
ρ̂(Mk) =

∑L−1
l=0 sl(Mk), 0 ≤ k ≤ K − 1. This equality holds for

allM = N/K and k ∈ [0, K − 1], therefore

ρ̂(k) =

L−1∑
l=0

sl(k), 0 ≤ k ≤ N. (23)

Physically (23) means that under the constraint (22), if the output
of each coil is fully acquired without downsampling, then ρ̂(k) at
any k ∈ [0, N ] can be simply reconstructed by directly summing
up the outputs of all coils acquired at the same k. This property has
been used in AUTO SMASH to estimate the H0 that satisfies the
constraint (22).

GRAPPA [4] is a generalization of AUTO-SMASH methods,
which also assumes the constraint (22). As seen from (23), under
this constraint, the reconstruction of ρ̂(k) using the downsampled
ŝl(Mk), 0 ≤ l ≤ L − 1, is equivalent to the reconstruction of its
L subcomponents ŝl(Mk − m), 1 ≤ m ≤ M − 1, 0 ≤ l ≤ L −
1. Hence, instead of reconstructing ρ̂(k) (or equivalently ρ̂(Mk −
m), 0 ≤ m ≤ M − 1) directly, GRAPPA reconstructs

ŝi(Mk −m) =

L−1∑
l=0

T−1∑
j=0

hi
ml(Mj)sl(M(k − j)), (24)

where m = 0, 1, · · · , M − 1, i = 0, 1, · · · , L − 1, T is a fixed
integer, and hi

ml(Mj) are complex coefficients with

hi
0l(Mj) =

{
1, l = i and j = 0
0, otherwise , i = 0, 1, · · · , L− 1. (25)

It then combines the reconstructed ŝi(Mk −m) using (23) or other
methods such as the sum-of-squares, see [4] and the references therein.
Define

Hi
ml(n) :=

K−1∑
j=0

hi
ml(Mj)W nj

K , H
i(n) := [Hi

ml(n)],

0 ≤ m ≤ M − 1, 0 ≤ l ≤ L− 1.

Then (24) can be written in the matrix form

ŝi(Mk) = H
i(n)s(Mk), i = 0, 1, · · · , L− 1, (26)

where s(Mk) is as defined in the previous section and

ŝi(Mk) := [ŝi(Mk), · · · , ŝi(Mk − (M − 1))]T . (27)

From (26), it is clear that when (23) is used to obtain ρ̂(k)=
∑L−1

l=0

ŝl(k), the GRAPPA reconstruction can be written in the form (8),
namely,

p̂(Mk) =

L−1∑
i=0

ŝi(Mk) =

L−1∑
i=0

H
i(n)s(Mk) = H(n)s(Mk),

(28)
where H(n) :=

∑L−1
i=0 Hi(n). In FB terms, GRAPPA attempts to

achieve the PR condition (12) using an FIR transfer matrix H(n)
with the order T − 1 and the first row elements all being 1.

Remark: The analysis above is based on the assumption that
the analysis AC matrixC(n) or the analysis polyphase matrix E(n)
is known. In practice, they are generally unknown and need to be
estimated. In SENSE and PILS,C(n) is estimated by pre-imaging,
while in AUTO-SMASH and GRAPPA, H(n) (instead of E(n)) is
estimated directly during real imaging process. Due to space limit,
further discussion on this topic is impossible here. The reader is
referred to [1, 2, 3, 4, 12] for the details of estimation methods.

4. H∞ OPTIMAL SENSE RECONSTRUCTION

The results of previous sections have provided a unified framework
for the analysis and improvement of the existing pMRI reconstruc-
tion methods and for the development of new methods. As a demon-
stration, we will use these results to improve SENSE method.

One of the major drawbacks of the original SENSE method is
its sensitivity to the additive noises when the condition number of
C(n) is poor [2]. In such case, the pseudo inverse C†(n) used in
SENSE will have high gain, which will amplify the subband noises
and significantly degrade the reconstructed image. This often happen
when high acceleration is used for fast imaging.

From the above FB analysis of pMRI, it is easy to see that the
pMRI reconstruction subject to noises is equivalent to the signal re-
construction in the FB subject to subband noises. As shown in [13],
the solution to the latter problem can be obtained from

min
F(n)

{‖[I −F(n)C(n)]‖2∞ + β‖F(n)‖2∞}, (29)

where β is a prescribed weighting factor. This is an H∞ norm opti-
mization problem, which can be solved by LMI optimization.

Let {AC , BC , CC , DC} and {AF , BF , CF , DF } be the state-
space realizations ofC(n) andF(n), respectively. Then it is routine
to show that the state-space realization of the system [I−F(n)C(n),

F(n)] is in the form

⎡
⎢⎣ A BV

... BN

C DV

... DN

⎤
⎥⎦ :=

⎡
⎢⎢⎢⎢⎣

AC 0 BC

... 0

BF CC AF BF DC

... BF

−DF CC −CF I −DF DC

... −DF

⎤
⎥⎥⎥⎥⎦ . Following [13],
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it can be shown that the solution to (29) can be found by the follow-
ing LMI optimization:

min
γa,γb,P,AF ,BF ,CF ,DF

{γ2
a + βγ2

b }, (30)

subject to

⎡
⎣ AT PA− P AT PBN CT

BT
NPA BT

NPBN − I DT
N

C DN −γ2
b I

⎤
⎦ < 0, (31)

⎡
⎣ AT PA− P AT PBV CT

BT
V PA BT

V PBV − I DT
V

C DV −γ2
aI

⎤
⎦ < 0, P = P T > 0,

(32)
where γa and γb are the upper bounds on ‖[I − F(n)C(n)‖∞ and
‖F(n)]‖∞, respectively. The H∞ optimal SENSE obtained from
the above optimization is compared with the original SENSE in the
simulation described below.

An eight head coil array is simulated by numerical calculation
of the Biot-Sarvart law to generate each coil’s sensitivity function
Cl(n) [1]. The obtained Cl(n) is then multiplied with an MR im-
age and then Fourier transformed to produce the Nyquist sampled k-
spaces. These k-spaces are further downsampled to generate sl(Mk)s
with M = 8. The white gaussian noise is added to sl(8k)s with
SNR=37dB. The above defined H∞ optimization is performed to
obtain the F(n), which is compared with the least squares PR solu-
tion of original SENSE algorithm. The reconstructed images of both
methods are given in Fig 1. The table below lists the detailed simu-
lation results where the relative reconstruction error ε=

∑256
i=1

∑256
j=1

ΔI2
i,j /

∑256
i=1

∑256
j=1 I2

i,j , and ΔIi,j and Ii,j are respectively the
absolute reconstruction error and the phantom input at the (i, j)-th
pixel.

Table 1. Comparison of SENSE andH∞ optimal SENSE
SENSE H∞ SENSE

ε 81.48% 15.82%
‖I −F(n)C(n)‖∞ 1.0247 × 10−9 9.9867 × 10−1

‖F(n)‖∞ 2.1665 × 106 3.9529 × 104

PR solution
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(a) Original SENSE
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(b)H∞ optimal SENSE

Fig. 1. Comparison of original SENSE and H∞ optimal SENSE

As can be seen from the simulation result, the H∞ optimal
SENSE provides better reconstruction than the original SENSE, re-
sulting in significantly reduced reconstruction error.

5. CONCLUSIONS

An FB analysis of pMRI reconstruction has been presented. The
underlying image reconstruction strategies of four most widely used
reconstruction methods have been cast into achieving PR in FB un-
der certain constraints. These results provide a unified theoretical
framework for the analysis and further improvement of the exist-
ing pMRI reconstruction methods, and for the development of new
methods. An improved reconstruction method is derived using the
analysis results and H∞ optimization, and its advantage is demon-
strated by an simulated example. Application of this FB analysis to
other pMRI reconstruction methods are give in [12].
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