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ABSTRACT

We present a robust method to retrieve neuronal fibers in hu-

man brain white matter from High-Angular Resolution MRI

(HARDI datasets). Contrary to classical fiber-tracking tech-

niques done on the traditional 2nd-order tensor model (DTI)

which may lead to truncated or biased estimated diffusion di-

rections in case of fiber crossing configurations, we propose

here a more complex approach based on a variational estima-

tion of Orientation Diffusion Functions (ODF) modeled with

spherical harmonics. This kind of model can correctly re-

trieve multiple fiber directions corresponding to underlying

intra-voxel fibers populations. Our technique is able to con-

sider the Rician noise model of the MRI acquisition in or-

der to better estimate the white matter fiber tracks. Results

on both synthetic and real human brain white matter HARDI

datasets illustrate the effectiveness of the proposed approach.

Index Terms— Diffusion MRI, Variational methods and

PDEs, ODF estimation, Fiber-tracking

1. INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) [1] is a non-

invasive method to observe the Brownian motion of water

molecules constrained by neuronal tissues in vivo within the

brain. Diffusion Tensor Imaging (DTI) is a well-known par-

ticular case of such a modality which maps each voxel signal

to a 2nd-order tensor model [2]. It implicitly assumes that the

diffusion is Gaussian everywhere, which is wrong and leads

to serious limitations when estimating intra-voxel diffusion

configurations where more than one single fiber direction pre-

dominates, like in crossing or kissing fibers patterns. In order

to overtake this significant shortcoming, higher order diffu-

sion model have been considered so far. Historically, Stejskal

and Tanner were the first to show the exact relation between

the diffusion signal and the diffusion probability density func-

tion (PDF) [3]. More recently, Tuch proposed the Q-Space

Imaging (QSI) technique based on the inverse Fourier Trans-

form to estimate the PDF. Unfortunately, this method has sig-

nificant restrictions essentially because of the long acquisi-

tion time needed to sample the whole q-space. Considering

QSI limitations, High Angular Resolution Diffusion Imaging

(HARDI) comes as an interesting alternative as it samples the

diffusion signal only on the single sphere following discrete

gradient directions; and consequently needs less time. Liu

et al. [4] proposed a generalization of DTI based on the ex-

pansion of Fick’s diffusion laws to higher order. However

in practice, this methods requires to sample several q-space

single spheres at different gradient strenghts and undesirably

increases the number of acquisitions. Tuch in [5] proposed to

measure diffusion orientation through the Orientation Distri-
bution Function (ODF) defined as the radial projection of the

spherical diffusion function from HARDI data. Given a unit

spatial direction u ∈ R
3, Ψ(u) is the radial projection of the

PDF on the line directed by u. Thus, the exact ODF Ψ can be

written without loss of generality with u taken as the z-axis,

as

Ψ(u) =
∫ ∞

o
P (αu)dα =

∫
P (r, θ, z)δ(θ, z)rdrdθdz (1)

Tuch [5] showed that the Funk-Radon transform (FRT) G from

the raw HARDI data approximates the ODF on the Q-space

single sphere:

Gq′ [S(q)](u) = 2πq′
∫

P (r, θ, z)J0(2πq′r)rdrdθdz (2)

where J0 stands for the zeroth-order Bessel function. Con-

sequently, the estimated ODF in a direction u is given by the

great integral over the diffusion signal on the plane orthogonal

to u. This leads to an interesting model-free method known as

Q-Ball Imaging to retrieve orientation diffusion informations,

contrary to the model-based methods which implies a strong

a priori knowledge about the local fiber configuration. Once

having estimated diffusion directions, an interesting applica-

tion of diffusion MRI consists in retrieving neuronal fibers in

brain white matter by the mean of a so called fiber-tracking
algorithm. This is classically done by computing the integral

curve of interpolated DTI dominant eigenvectors [6, 7]. How-

ever, these methods are very sensitive to noise since it always

suppose that the dominant eigenvector is correct. Noise issue

was tackled in [7, 8, 9] who proposed to apply regularization

schemes on tensor or principal direction before applying the

fiber-tracking step. One of the main limitation of the DTI

model is that it is not able to retrieve several intra-voxel fiber

distributions, leading to wrong or biased estimation of domi-

nant fiber directions. On the other hand, recent higher order

models as ODF fields are promising for estimating correct

neuronal fibers.

In the following sections, we quickly remind the linear esti-

mation technique of the ODFs introduced by Descoteaux et
al. [10] (section 2.1). In section 2.2, we present our contri-

bution, i.e. a new variational framework for a more robust
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estimation of the ODF field. It has the advantage of being

nonlinear, allowing to estimate and regularize simultaneously

a whole volume of ODFs. We highlight the importance of a

robust ODF estimation considering regularization constraints

on fiber-tracking in section 3. We finally illustrate this model

by validating results on synthetic and human brain HARDI

data.

2. ROBUST ESTIMATION

2.1. Linear estimation
Descoteaux et al. [10] recently proposed an elegant analyti-

cal method based on the Funk-Hecke theorem to calculate the

great integral of the FRT from a signal expressed in a spheri-

cal harmonics (SH) modified basis. It is a set of orthonormal

functions to describe complex functions defined on the unit

sphere and constrained to be symmetric and real [10, 11, 12]

as these are known diffusion signal properties. Thus, let Yj of

degree j be a spherical harmonic, any function χ defined on

the unit sphere ∀(θ, φ) ∈ Ωχ = [0, π] × [0, 2π) , χ : Ωχ → R

can be described as:

χ(θ, φ) =
∑N

j=0 cjYj(θ, φ) = B̃Cj(p)(θi, φi) (3)

where N corresponds to the highest degree of the decompo-

sition into spherical harmonics, B̃ is a matrix of SH functions

Yj and C : R
3 → R

N be the vector of coefficients of spheri-

cal harmonics at voxel p = (x, y, z).
Let S : R

3 → R
ns be the vector field of diffusion signal in

ns discrete directions on the sphere. Descoteaux et al. [10]

proposed to fit the signal with a continuous spherical function

by a least square minimization

minC∈ΩS
||S(p)(θi, φi) − B̃C(p)(θi, φi)||2 (4)

where θi, φi follow gradient discretization of the diffusion

signal on the single sphere. Best fitting coefficients C are then

given by a modified Moore-Penrose pseudo-inverse scheme.

C(p) = (B̃T B̃ + λL̃)−1B̃T S(p) (5)

where λ is the weight term on the frequential regularization

matrix L̃. At this point, we have a continuous spherical func-

tion fitting the diffusion signal. We want now to recover the

ODF which gives the orientation of the diffusion. Descoteaux

et al. [10] showed that the FRT approximating the ODF can

be expressed using the SH basis, by:

Gq′ [S(p)(q)] = P̃ B̃C(p) =
∑

j

[
2π

Plj
(0)

Plj
(1)

]
cj(p)Yj(p) (6)

where P̃ a N -rank order diagonal matrix, and Plj are asso-

ciated Legendre polynomials at order lj (value of l knowing

j). P̃ is a transition matrix from Q-space signal to diffusion

probability space.

The spherical harmonics are a powerful tool to recover an ap-

proximation of the ODF. However, MRI noise distribution

follows a Rice distribution [13] not a Gaussian one. There-

fore, a least square fit is definitely not the best choice for

such an estimation process. Furthermore, estimation is made

voxel-by-voxel and does not reflect the spatial regularity of

the diffusion function. Hence, our contribution is a variational

framework which is adaptable to MRI noise distribution and

able to use valuable informations of the neighbour voxels.

2.2. PDE-based estimation
The key idea is to estimate and regularize the whole volume

of voxels at the same time. It is worth to mention that similar

methods have been proposed for the regularization of DTI [9,

14] and apparent diffusion coefficient (ADC) [15]; yet none

is able to take advantage of the informations provided by the

ODFs.

Let C : ΩC ⊂ R
3 → R

N be the volume of spherical harmon-

ics coefficients, ns ∈ R be the number of gradient directions

and B̃ be the matrix of size (ns, N)

B̃ =

⎡
⎢⎣

Y1(θ1, φ1) . . . YN (θ1, φ1)
...

. . .
...

Y1(θns , φns) . . . YN (θns , φns)

⎤
⎥⎦ (7)

We propose to robustly estimate and regularize the ODF field

simultaneously by minimizing this nonlinear functional en-

ergy E defined as:

min
C∈ΩC

{
E(C) =

∫
ΩS

[
ns∑
k

ψ(|Dk|)
]

+ αϕ(||∇C||)dΩS

}

(8)

where Dk at voxel p is Dk(p) = Sk(p) −
∑

j P̃−1
j B̃k,jCj(p)

is a data attachment term which measures the differences be-

tween the raw signal and its ODF estimation at gradient di-

rection k, ψ : R → R
+ and ϕ : R → R

+ are real and

positive functions, α ∈ R is the regularization weight and

||∇C|| the gradient norm defined as ||∇C|| =
∑

j ||∇Cj ||.
Note that if ψ(s) = s2 and α = 0 in (8), we minimize the

LS criterion (5, corresponding to the Descoteaux’s method

with λ = 0). Yet, as MRI noise follows a Rician distribution,

least square criterion is not the best choice. The ψ function is

defined to support a robust ODF estimation and regularization

preserves contours between different fiber distribution regions

using the gradient norm ∇||C||. Indeed, Frank in [12] points

out that the spherical harmonics basis is well adapted to char-

acterize anisotropy since its coefficients characterize isotropic

(j = 0), one-fiber (j = 1), and several fibers (j >= 2) diffu-

sions. As the minimization cannot be computed straightfor-

wardly, the gradient descent coming from the Euler-Lagrange

derivation of (8) leads to a set of multi-valued partial derivate

equation (PDE) (9). In order to estimate a solution, SH coeffi-

cients velocity ∂C
∂t giving the direction from the current Ct to

a solution is computed. The latter is done several times until
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convergence (typically when ε → 0, ∂C
∂t < ε,).

∂Cj

∂t = P̃−1
j

∑
k ψ′(|Dk|) sign(Dk)B̃k,j

+α div(ϕ(||∇C||))
(9)

The initial estimate Ct=0 = U0 is computed either by con-

sidering a random field or a more structured one. A good

choice is to start from an initial set which is not so far from

the global minimum; so the linear LS estimation (5) seems

to be an adequate alternative. Indeed, LS minimization is the

global minimum when ψ(s) = s2 and α = 0. One can ex-

pect the minimum to be close enough to the LS minimum

through variations of ψ and ϕ (c.f . Fig.1.(e/f)); and should

consequently bring down the number of iterations required to

converge.

3. FIBER-TRACKING
DTI-based fiber-tracking has been widely used [6, 7, 8, 9]

but it has significant drawbacks when dealing with intra-voxel

structures. Indeed, not only DTI cannot model crossing or

kissing fibers but it also estimates wrong directions in the case

of multiple fiber configurations. On the contrary, ODF does

not fall into this restrictions. Nevertheless, although the issue

of robust fiber-tracking has received numerous contribution

with DTI model it is still an open problem when using ODFs.

In order to illustrate the influence of a robust ODF estimation

on fiber-tracking, we propose a model for retrieving neuronal

fiber in brain white matter.

A way to do fiber-tracking is to use estimated displacement

due to diffusion which is given by the ODF in order to find

dominant directions. Once directions are retrieved, only one

is kept based on a a priori on the fibers distribution, resulting

in a diffusion tensors field w. A line integration scheme is

needed to propagate a fiber along a curve C through the ten-

sors volume (c.f . Fig.1). One may want to use Euler method

Ca+h = Ca + hwa + O(h2) (10)

where a is the current position in the curve C and h is the inte-

gration step. In practice, Euler’s method is not stable and pre-

cise and so Runge-Kutta comes as an interesting alternative.

This method can be seen as the result of reduction in preci-

sion of a curve C′ more precise than C because of a smaller

integration step

Ca+h = Ca + k1
6 + k2

3 + k3
3 + k4

6 + O(h5) (11)

where ki are the slope estimated in a+i/4h. Actually, fourth-

order Runge-Kutta is by far the most precise and is the one we

used on our tests.

Besides, we assume that there are no neuronal fibers in water

regions of the brain, and consequently there is a need to iden-

tify this regions. Generalized Fractional Anisotropy (GFA)

(c.f . bottom of Fig.1.a) as proposed by Tuch in [5] measures

the variation within the diffusion as a spherical function. It

can be expressed in the spherical harmonics basis which has

the advantage to be much faster to compute.

GFA = std(Ψ)
rms(Ψ) =

√
1 − c2

0PN
j=0 c2

j

(12)

This gives a convenient way to measure apart isotropic from

anisotropic area; therefore we used it to stop fiber line inte-

gration when arriving in water area, i.e. when GFA is below

a threshold.

4. APPLICATIONS
For all our experiments, we used the robust estimation func-

tion ψ(s) = 1− e(− s2
κ1

)
and the discontinuity-preserving reg-

ularization function ϕ(s) = 1
1+s2/κ2

, where κ1 and κ2 are

two thresholds depending on the value range of the original

HARDI dataset. Please refer to [16] for a function ψ specific

to MRI Rician noise. We first present results of our varia-

tional framework on synthetical HARDI data created using a

Gaussian multi tensor model [11] to simulate n fibers cross-

ing. Discretization of the sphere (72 directions) was obtained

from the subdivision of a regular icosahedron. Our synthetic

data simulate horizontal and vertical fibers (respectively right

and top in Fig.1) merging into one horizontal fiber (left in

Fig.1). From the several fibers distributions estimated, we

retrieved one using a simple a priori, i.e. to follow the di-

rection which is the most vertical. As expected, DTI is not

able to retrieve correctly the profile of any underlying fiber

as shown in Fig.(1.b). Instead, it estimates a wrong direc-

tion, which is a mixture of the two main directions from each

fiber distribution. Therefore the estimated fiber is a fictive one

since a correct path in this dataset would be either horizontal

or going vertical. Fiber-tracking on ODF does not have this

problem, but it is sensitive to noise. However our variational

method successfully estimates the ODFs field from noisy data

(PSNR = 15dB), which leads to good fiber-tracking (c.f .

Fig.1.(e/f)).

We finally tested our estimation framework on a human brain

HARDI dataset, using a 1.5T MRI scanner with 31 gradient

directions and b = 500s/mm2. A comparison between DTI,

linear estimation and our variational framework is shown in

Fig.2 on an interesting brain white matter region as it is the

meeting place of several fibers. Our regularized three dimen-

sional estimation performs an enhancement of the contrast of

the diffusion function when there are underlying fibers, and

keeps water regions isotropic.

5. CONCLUSION
We proposed a robust tractography method with the use of
variational scheme to estimate ODFs from HARDI data. This
greatly improves the performance and the precision of the
results on very preliminary MRI noisy data. The ability to
recover reliable and accurate intra-voxel fibers distributions
within the human brain is promising and opens new perspec-
tives for studying more precisely the neuronal fiber network.
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(a) GFA (b) DTI (c) LS

(d) noisy GFA (e) noisy LS (f) noisy PDE

Fig. 1. Crossing fibers distributions: estimation and fiber-tracking.

(a) FA (b) DTI (c) LS (d) PDE

Fig. 2. Comparison of estimation on frontal genu corpus cal-
losum meeting frontal gyrus.
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