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ABSTRACT

Magnetic Resonance (MR) systems can be used to monitor tem-
perature changes in and around a treated region during an hyper-
thermic ablation procedure. Dynamic temperature monitoring al-
lows on-line prediction of cellular destruction during the interven-
tion. MRI systems associate each volume unit with a complex num-
ber. Phase component is 2π-periodic (it is a function of the wrapped
phase) and accounts for noise sources present in MR imaging. Ro-
bust spatial phase unwrapping is a necessary prerequisite for sev-
eral applications. This study proposes a spatial phase unwrapping
algorithm for MR images, allowing a real time implementation for
on-line temperature monitoring.

Index Terms— Magnetic Resonance Imaging, Signal process-
ing, Real time systems, Temperature control.

1. INTRODUCTION

Local thermal therapies are increasingly clinically used for tissue
ablation [1] [2]. In order to improve the therapeutic efficiency and
the safety of the intervention, mapping of temperature and thermal
dose appear to offer the best strategy to optimize such interven-
tions and to provide therapy endpoints. On-line availability of dy-
namic temperature mapping allows prediction of tissue necrosis dur-
ing the intervention based on semi-empirical thermal dose calcu-
lations [3]. Of the different imaging modalities, Magnetic Reso-
nance Imaging (MRI) appears the ideal tool for temperature map-
ping. Much progress has been made recently in MR thermometry
research, and some applications are appearing in the clinic. A par-
ticular advantage of MRI for guiding thermal procedures is that MRI
not only allows temperature mapping but it can also be used for tar-
get definition.

The MR observable signal is a complex number. Grey levels on
anatomical images are proportional to the magnitude value whereas
phase value relates the proton resonance frequency. The most widely
used MR temperature mapping is based on temperature dependence
of the water proton resonance frequency (PRF) [4]. The temperature
map at instant n (noted ΔTn) can be obtained on-line by analyzing
signal variation between the current phase image ϕn and a reference
phase image ϕref acquired before the hyperthermia (typically the
first of the temporal serie ϕ0) as follow :

ΔTn = (ϕref − ϕn) .k k =
1

γ.α.B0.TE

(1)

Thanks to the “Conseil Regional d’Aquitaine”, the “Ligue National Con-
tre Le Cancer” and the french Ministry of Research for financial contribution.

where γ is the gyromagnetic ratio (≈ 42.58 MHz/Tesla), α the
temperature coefficient (≈ 0.009 ppm/K), TE the echo time and B0

the main magnetic field. This calculation is performed for each voxel
to obtain temperature maps.

Phase wraps often occur on organ regions with presence of large
susceptibility variations [5]. During on-line thermometry interven-
tion, robust phase unwrapping plays a very important role :

• in the creation of sensivity maps required for a sensitivity en-
coding (SENSE) reconstruction [6], which is very usefull to
reduce considerably scan time,

• in several implementations for distortion compensation of echo
planar images [7],

• for a number of image processing requiring phase signal in-
tensities of a given pixel and its neighbours (spatial transfor-
mation application or filtering for example [8]).

Phase unwrapping has typically to cope with images of low reso-
lution (compared to the spatial variation of a phase jump), low SNRs
and also discontinuous data sets.

To allow on-line monitoring of temperature, phase unwrapping
for each image of the time series must be performed under the fol-
lowing conditions:

• Real time implementation : unwrapping of an image must
be fast in order to be done in the interval of time between
two successive acquisitions (approximatively 30 ms and 60
ms for images of resolution 64 × 64 pixels and 128 × 128
pixels respectively) to ensure on-line monitoring of tempera-
ture evolution. In addition, computation time must not vary
with the phase wraps complexity, preventing the use of it-
erative optimization schemes. A maximal computation time
must be known for a specific image resolution.

• No user calibration of the algorithm for the observed organ.
Several algorithms have been proposed in the litterature for var-

ious applications (radar, interferometry, ...) and a good overview of
phase unwrapping can be found in Chavez et al [9]. Phase unwrap-
ping approaches belong mainly to one of the following classes: path
following [10], minimumLp norm [11], Bayesian/regularization [12],
and parametric modelling [13]. Although the majority of phase un-
wrapping methods lead to satisfying results on coherent MRI-datasets
with large SNR and sufficient spatial resolution [14], they have com-
monly problems to cope with severely under-sampled or degraded
datasets which are typically obtained by fast imaging methods with
long echo times. In addition, time computations required are gener-
ally not compatible for an on-line implementation.

Spatial phase unwrapping performed with a region growing ba-
sed algorithm was found to be very low time consumming as each
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pixel is visited only one time. However, the major drawback is that
an error made in one pixel is propagated on pixels observed there-
after. This study proposes a robust automatic region growing based
phase unwrapping algorithm for on-line temperature monitoring ex-
ploiting the information given by the two complex components of
the MR signal.

2. METHOD DESCRIPTION

An assumption taken by most phase unwrapping algorithms is that
the absolute value of phase differences between neighbouring pixels
is less than 2π. If this assumption is not violated, the absolute phase
can be easily determined, up to a constant. This condition might be
violated if the true phase surface is discontinuous, or if the wrapped
phase is noisy. In either cases, phase unwrapping becomes a very
difficult problem. The proposed approach consists of using magni-
tude intensity of the MR signal as a quality criterion in order to :

1. Perform an oriented region growing algorithm supporting first-
ly neighbouring pixels with the smallest phase uncertainty.

2. Improve computation time by restricting phase unwrapping
to regions having a sufficient signal to estimate an accurate
phase value.

2.1. Evaluation of a quality criterion on MR phase signal using
magnitude images

The accuracy of MR thermometry depends on several factors such
as signal-to-noise ratio (SNR), echo time, field strength, artifacts.
Acceleration of image acquisition [15] in order to increase temporal
resolution usually implies a SNR reduction. It is well established
that electronic noise is Gaussian white noise [16]. The MR system
measures the real and imaginary components of the signal. As these
two data each contain (ideally) Gaussian white noise, the resulting
noise in the magnitude images will have a Rician distribution [17]
[18]. In addition, biological noise and potential noise generated by
the heating device can also hamper image quality. SNR can be eval-
uated on-line on magnitude images as follow :

SNR =
M

σG

=
M

σR × 1.53
(2)

whereM is mean pixel intensity in a region where sufficient sig-
nal is measured, σG and σR are Gaussian and Rician noise standard
deviations respectively. respectively (σR can be computed in a re-
gion where no signal is available). Those two regions of interest are
manually defined before the intervention by the user.

Phase uncertainty can be related to SNR with the following ex-
pression [20] :

σ(ϕ) =
1

SNR
(3)

It is also well-established that magnitude signal is decreased in
voxels containing phase wraps higher than 2π [19]. Phase uncer-
tainty is thus directly linked to magnitude signal. Indeed, tempera-
ture computation may be artifacted for voxels with low magnitude
intensity (since in region without signal, phase value may take any
value between 0 and 2π).

2.2. Proposed region growing algorithm

The first idea of the proposed approach consists of using magnitude
signal to perform an oriented region growing algorithm supporting

firstly neighbouring pixels with the smallest phase uncertainty. In
principle, the fully automated algorithm works as follow :

1. A germ is placed in the pixel with the highest magnitude sig-
nal intensity.

2. Neighbouring pixel in 4-connexity with highest magnitude
signal is selected.

3. Spatial phase gradients between the initial pixel and this neigh-
bour is computed.

4. 2π is then either added if this gradient is higher than π or
subtracted if the gradient is lower than −π.

This process is repeated until all pixels are visited.

2.3. Signal intensity threshold filter

To improve computation time, the second idea of the proposed ap-
proach is to analyze the MR-signal for each pixel of the acquired
images in order to restrict phase unwrapping to regions having a suf-
ficient signal to estimate a correct phase value and thus an accurate
temperature measurement.

The precision of temperature estimation can be estimated from
the standard deviation of a time series of measurements. As tem-
perature variation is proportional to a phase variation, noise on the
measured temperature can be evaluated with:

σ(ΔT ) =
�

σ2(ϕref ) + σ2(ϕn).k (4)
By assuming that noise is equally distributed in phase images

(σ(ϕref ) = σ(ϕn) = σ(ϕ)), we obtain:

σ(ΔT ) = σ(ϕ).
√

2.k (5)
A binary mask, selecting voxels with sufficient signal for tem-

perature computation can be obtained by thresholding magnitude im-
ages. This threshold may depend on many parameters (the observed
organ, the acquisition sequence used, etc...) and cannot be arbitrarily
defined. A possible approach consists of computing this threshold by
making a statistical SNR analysis. Combining equations 3 and 5 it
can be obtained that theoric temperature uncertainty σ(ΔT ) can be
linked to SNR with:

σ(ΔT ) =

√
2.k

SNR
(6)

A validity range for the signal can be constructed by threshold-
ing magnitude images with a thresholdMT determined from an ac-
ceptable uncertainty on temperature, computed with:

MT =
σR.1.53.

√
2.k

σmax(ΔT )
(7)

where σmax(ΔT ) is the maximal acceptable standard devia-
tion on temperature defined by the user (σmax(ΔT ) = 2oC for
instance). When too many pixels do not match the validity range,
the user can either optimize the acquisition sequence parameters to
increase the SNR or adjust the value of the threshold σmax(ΔT ),
accepting a reduction of temperature precision.

3. EXPERIMENTAL VALIDATION

All images were obtained on a 1.5 Tesla Philips Intera Achieva sys-
tem with a conventional gradient echo sequence. Echo time was set
to 50 ms. A rectanguler field of view of size 230 mm and a slice
thickness of 5 mm were used.
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Fig. 1. Sagital high resolution image of a human head used to create
a reference spatial unwrapped phase image - A : anatomical image,
B : phase image, C : reference spatial unwrapped phase image (B)
unwrapped with the proposed algorithm.

Fig. 2. MR images of Figure 1 with simulated additional Gaussian
noise to the complex data - Up : anatomical images, Down : corre-
sponding wrapped phase images.

The presented images show the wrapped and the unwrapped
phase maps of a human head as an typical example of the compari-
son (see figure 1). The regions close to the sinus cavities show strong
local B0 inhomogenities, which lead to a high rate of phase wraps.

The algorithm created a reference unwrapped phase map from
a high resolution (0.5 mm in plane) and high SNR (higher than 50)
dataset (see figure 1.C).

Resolution Unwrapping on Signal intensity
(pixels) all pixels (ms) threshold filter (ms)

512× 512 10389 465
256× 256 603 36
128× 128 42 5
64× 64 4.7 0.8

Table 1. Computation time.

Low SNRs and spatial undersampling lead to incorrect phase es-
timates which are evaluated on show error maps reported on Figures
3. Those error maps are constructed using the mean absolute phase
deviation from the reference phase.

The robustness against low noise levels was investigated by ad-
ding additional a Gaussian noise to the complex data in a separate
postprocessing step, in order to achieve a series of images with an

Fig. 3. Absolute error maps between unwrapped phase images and
reference unwrapped phase image reported on figure 1.C for differ-
ent SNR value and different image resolution (First row : 512× 512
pixels, Second row : 256×256 pixels, Third row : 128×128 pixels,
Fourth row : 64× 64 pixels).

SNR of 10, 5 and 2.5 (see Figures 2.A to 2.H).

Spatial undersampling of areas with a high rate of phase wraps
complicates a correct phase estimate. To investigate the influence
of spatial undersampling of phase wraps on the proposed algorithm,
high resolution data was obtained and lower resolutions were real-
ized by digital down-sampling in Fourier space as a post-processing
step. The following matrix sizes are thus obtained : 512 × 512,
256× 256, 128× 128 and 64× 64.

The algorithm have been implemented in C++ and Table 1 re-
ports computation time obtained for different image resolutions on
our test plateform (AMDAthlon 3400+ with 1 Go of RAM). The left
column gives an upper bound on computation time as the proposed
region growing algorithm is performed on the whole image, whereas
the right column shows the computation time when the signal inten-
sity threshold filter is applied.
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4. DISCUSSION AND CONCLUSION

Results obtained demonstrated that the proposed algorithm is fully
stable to noise as unwrapping errors were observed only on high res-
olution images with SNR lower than 5 (see Figure 3.C). It can also
be observed that in areas of severe spatial undersampling, like in the
vicinity of the sinus cavities, the algorithm have problems to recon-
struct the correct phase. This is due to the fact that the fundamental
condition that phase variation cannot by be higger than 2π is vio-
lated. However, it is shown that the proposed algorithm isn’t likely
to propagate these errors to normally well behaved regions as mag-
nitude signal is decreased in voxels containing phase wraps higher
than 2π [19].

This study demonstrated the importance of the magnitude infor-
mation for phase unwrapping problem in magnetic resonance imag-
ing :

• To improve the robustness by preventing errors propagation
in region growing algorithm. The proposed approach is very
well adapted to MR images as magnitude signal information
is used to provide a quality criterion on phase measurement in
order to observe firstly pixels allowing reliable unwrapping.
This stability has a special importance in regions with strong
B0 inhomogeneity, such as the caudal brain or areas inside or
near tumors.

• To reduce considerably computation time by limiting the num-
ber of observed pixels using a quality criterion set on tem-
perature accuracy, preventing any user calibration to the ob-
served organ.

Another advantage of this approach is that the computation time
only depends on image resolution and doesn’t vary with the number
of phase wraps present and the noise level. Computation can typi-
cally found between 465 ms for a 512× 512 dataset and less than a
millisecond for 64×64 images. Performances obtained are thus fully
compatible with a real time implementation for on-line temperature
monitoring.

Currently, our algorithm is implemented for two-dimensional
image but could be extended to unwrap three-dimensional data sets
when technological progress in rapid MR thermometry protocol will
allow on-line acquisition of 3D volumes.

It is also important to note that this algorithm is not restricted to
computation of MR thermometry and have succesfully be adapted to
remove artifacts related to phase wrapping on MR venography [21].
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