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ABSTRACT

Real-time Magnetic Resonance (MR) thermometry provides con-
tinuous temperature mapping inside the human body and is there-
fore a promising tool to monitor and control interventional thera-
pies based on thermal ablation. Temperature information must be
mapped to a reference position of observed organs in order to al-
low thermal dose computation, as the history of temperature is re-
quired for each pixel. Motion compensated MR-thermometry for
thermotherapy has to cope with Radio-Frequency (RF) artifacts and
relaxation-time changes of the monitored tissue. While purely optical-
flow-based realignment may lead to temperature map computation
errors for the case of local or global intensity changes, Principal
Component Analysis based realignment results in accurately regis-
tered temperature maps.

The motion estimation process described in this paper consists
of two steps : a parameterized flow models is initially computed
using a principal component analysis during a preparative learning
step; during the intervention, motion is characterized with a small
set of parameters using a least square solver.

Index Terms— Magnetic Resonance Imaging, Real-time, Tem-
perature control, Motion compensation, Principal Component Anal-
ysis

1. INTRODUCTION

Real-time MR-thermometry provides continuous temperature map-
ping inside the human body and is therefore a promising tool to
monitor and control interventional therapies based on thermal ab-
lation carried out with help of radio-frequency, laser, cryogenics or
focused ultrasound (FUS) [1].

The magnitude of the observable MR signal is directly propor-
tional to the tissue density while the phase is proportional to the tem-
perature of the observed tissue. Therefore, comparing the phase of a
dynamic MR imaging to a reference phase (for example the first of
the series) permits the calculation of the relative temperature differ-
ence [2].

Unfortunately, temperature variations are not the only contribut-
ing factors to phase changes of the MR signal. Motion of the ob-
served tissue in imperfect magnetic fields and susceptibility varia-
tions between different tissues also alter the phase of the MR signal
[3]. Therefore, a robust removal of these non-temperature related
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phase variations is a prerequisite for precise MR-thermometry on
moving objects.

Several approaches have been proposed in the past such as mod-
eling of the motion induced phase changes [4], artefact estimation
by extrapolation from areas not affected by temperatures changes
[5] and phase correction tables [6]. The latter approach is motivated
by the fact that for most therapeutic applications within the human
body, motion is caused by the respiratory or the cardiac cycle and is
thus periodic. This can be exploited by establishing a phase lookup-
table prior toMR-thermometry which covers the entire motion cycle.
Subsequently, during MR-thermometry, for a given organ position
the corresponding phase correction is selected and subtracted from
the current phase. Since the difference represents only temperature
related phases changes, the correct temperature can be estimated.

Thus, temperature evolution allows on-line thermal dose evalu-
ation during the intervention, which in turn permits an accurate and
immediate prediction of tissue necrosis. The thermal dose can be
compute as the integral over time of the temperature during the hy-
perthermia procedure [7]. In order to calculate the thermal dose,
motion during the intervention has to be compensated.

In the past, several techniques have been suggested to estimate
organ displacement, for example navigator echoes [8] (the estimated
motion information is restricted to translational motion) or ultrasonic
echoes [9] (the estimated motion information is restricted to knowl-
edge outside the heating zone because of the echo perturbation in-
duced by the temperature rise), or by means of image processing.

For the latter, a 3D image registration would be required. How-
ever, in practice it is possible for respiratory induced motion to choose
the imaging plane direction parallel to the principal axis of the organ
displacement and thus reduce the problem to two dimensions.

Although organ displacement estimation can be addressed by
any established 2D image registration method, the complexity of
the periodical motion patterns in the abdomen are poorly described
with global parametric affine linear models. Optical-flow based im-
age registration methods obtain the complex displacement of image
components on a pixel-by-pixel basis [10] and are thus more suitable
for realignment.

However, optical-flow based algorithms rely on the assumption
of conservation of pixel value along the trajectory. This condition
can be violated during thermotherapy. Since tissue is heated, several
MR relevant tissue properties such as T1 and T2 relaxation times can
change during imaging [11]. This leads to local intensity variations,
which in turn can be interpreted by optical-flow based algorithms
as “false motion”. In addition, potential global intensities varia-
tions can be generated by the heating device. This makes optical-
flow based image registration less robust compared to affine models
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which rely on a global fit of the image content and are thus less sus-
ceptible to local intensity variations.

The objective of this paper is to propose a robust registration
algorithm to estimate periodical motion from anatomical images in
real-time, in order to correct errors generated by organ displacements
on thermal dose maps.

In order to fulfill the real-time condition, the entire processing
of an image must be done in the interval of time between two suc-
cessive acquisitions (approximatively 140 ms for one image of reso-
lution 128×128 pixels for instance) to ensure on-line monitoring of
temperature evolution.

2. METHOD DESCRIPTION

During the hyperthermic intervention, local and global intensity mod-
ifications on MR-magnitude images may be generated not only by
displacement of the image content, but also by cellular destruction
and artifacts generated by the heating device. Since optical flow
based realignment would also interpret the latter as motion, the pro-
posed approach is to learn motion patterns based on optical flow
analysis from images acquired during a preparative learning step per-
formed before hyperthermia. Subsequently, Principal Component
Analysis (PCA) is used to find the eigenvectors of the observed set
of flow fields [12]. In the scope of this paper, we refer to these
eigenvectors as basis flows. Then, during hyperthermia, individ-
ual flow fields are represented as a linear combination of the basis
flows. The coefficients of the linear combination are estimated us-
ing a Marquardt-Levenberg least square solver. This provides a flow
field that is consistent with the learned model and robust under the
assumption of global brightness constancy but allows local intensity
variations.

2.1. Estimation of organ displacement during the preparative
learning step

The training set from which we learn a model of image motion is
a set of n flow fields. The objective is to relate the coordinate of
each part of tissue in the image with the corresponding part of tis-
sue in a reference image. In this study, the reference image is cho-
sen to be the first of the time series. In general, motion estimated
on anatomical images can be obtain by a variety of image registra-
tion algorithms [10]. However, registration efficiency is related to
the nature and domain of the transformation to detect (global [13]
[14] or local [15] [16] transformation). A compromise has thus to
be found between the permissiveness of the spatial transformation
T and the robustness of the estimation process. For strong motion
amplitude, well-adapted technique consists of using results obtained
with a global transformation estimation as a starting point for a lo-
cal transformation estimation. To estimate organ displacement prior
hyperthermia, a global affine transformation is estimated in a first
step, using a differential approach of Gauss-Newton algorithm [13].
In a second step, a hierarchical approach of Cornelius and Kanade
algorithm [15] provides a good estimation of local organ displace-
ments because of the regularity constraint assuming that motion field
vectors have similar values for adjacent pixels matching real organ
motion. Cornelius and Kanade technique requires an intensity con-
servation between compared images and a regular displacement be-
tween adjacent pixels, resulting in minimization of the expression:
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Ixu+ Iyv+ It

]2
+α2

[
‖∇u‖22+‖∇v‖22

]

+β2‖∇w‖22
)
dxdy (1)

where u and v are displacement vectors, w= dI
dt , and Ix, Iy, It are

the partial derivative of the intensity, and α and β is a user defined
weighting factor. This minimization problem can be numerically
solved with an iterative scheme like Gauss-Seidel.

The length of the preparation step has to be determined to cover
an entire motion period of the observed organ. For example, for
the case of abdominal MRI sequences, according to the fact that a
respiratory period is around 4 seconds, and dynamic acquisition time
about 0.1 second, preparation step has to contain at least 100 images.

2.2. Learning parameterized flow models

At this point, we have a model of image motion which is a set of
n optical flow fields (n is the length of the preparation step). These
fields will be used to build a parameterized flow model. For an im-
age i of size s pixels, each flow field Fi contains 2s quantities, since
a displacement vector is decomposed in two elements, one for hori-
zontal displacement (u(x,y)), one for vertical displacement (v(x,y)).
For each flow field, we place the 2s values as a line of a learning
motion matrix of 2s x n dimensions (noted F).

Subsequently, PCA is used to find an orthonormal basis that
spans an n-dimensional vector space [17]. The components of this
basis can be interpreted as the under-laying characteristic patterns of
the motion cycle. Since data sets from coherent periodical motion
cycles have typically a high degree of redundancy, PCA is a conve-
nient way to reduce the dimensionality n of the the basis. A way to
quantify redundancy is to compute the covariance between each pair
of variables.

Cov(F) =

⎛
⎜⎝
Cov(F1,F1) · · · Cov(F1,Fn)

...
. . .

...
Cov(Fn,F1) · · · Cov(Fn,Fn)

⎞
⎟⎠ =

1
2s−1

FFT (2)

Let S be the re-representation of the original data set F . PCA
makes the assumption that S = {s1, · · · ,sn} is a linear combination
of F and we note P= {p1, · · · , pn} the linear transformation :

S = PF (3)

Each vector of S is the projection of the corresponding vector of
F on to the {p1, · · · , pn} basis and the row vectors {p1, · · · , pn} are
called the principal components of the data.

As redundancy wanted to be eliminated from final data repre-
sentation, each variable must be as uncorrelated as possible with the
other variables. Thus, the covariance matrix of S should have maxi-
mized diagonal elements and zero off diagonal terms.

The S matrix can be described as:

• S = PF, P being an orthonormal matrix

• Cov(S) = 1
2s−1SS

T is a diagonal matrix

The unknown of the problem being P, the covariance matrix for-
mula in terms of P has to be expressed as follow:

Cov(S) =
1

2s−1
SST =

1
2s−1

PAPT (4)

with A= FFT . A is symmetric, so we have A= EDET , E being
the matrix of the orthonormal eigenvectors of A, and D a diagonal
matrix. Let P be the transpose of matrix E:

Cov(S) =
1

2s−1
D (5)

III - 142



The rows of P constitute the principal components of F and by
choosing the basis of projection such that its vectors are the orthonor-
mal eigenvectors of A, the correlation between the variables of the
projected configuration is minimized. Moreover, the ith diagonal
term of Cov(S) represents the variance of F along the ith principal
component. In order to reduce the dimensionality of the original
data set, we will conserve only the k eigenvectors Bk associated to
the k largest eigenvalues λi in order to preserve the representative
patterns of the observed motion. The size k of our subset is obtained
by selecting only a subset of the highest ranked components which
accounts for more than 95% :

k

∑
i=0
var(λi) ≥ 95% (6)

with

var(λi) = λ2i /
n

∑
j=0

λ2j (7)

2.3. Estimation of motion parameters during the intervention

During the intervention, the approximated spatial transformation Tt
between anatomical image acquired at instant t (noted It ) and the
reference image (noted I0) is a linear combination of the first k basis
Bi previously computed:

Tt =
k

∑
i=0
CiBi (8)

whereCi are the parameters of the model to be estimated.
The objective is to find the coefficients Ci that produce a flow

field minimizing the following expression :

LS = (I0−Tt(It))2 (9)

This minimization is computed using a Marquardt-Levenberg
least square solver [18].

3. RESULTS

We simulated periodic organ displacement of an amplitude of 23
mm peak-to-peak and a period of 3.8 seconds by mounting 600g of
calf liver was mounted on a motorized platform. An in-house devel-
oped bipolar Radio-Frequency (RF) ablator were used for thermal-
ablation. Dynamic MR temperature imaging was performed on a
Philips Achieva 1.5 Tesla with a dual-shot gradient recalled EPI se-
quence. Echo time and repetition were set to 13 ms and 70 ms,
respectively. A single slice with an acquisition matrix of 128×128
voxels and a voxel size of 1.5×1.5×5 mm3 was acquired each 140
ms. During the preparative learning step, one hundred images were
acquired to allow a precise sampling of the periodical motion. Then,
the tissue has been heated with 20 Watts of RF-power during 50 sec-
onds.

Figure 1.A and 1.B show a snapshot of the temperature distri-
bution after 30 seconds of radio-frequency heating. The red color
coding depicts the heated region around the two electrodes of the RF
heating device. In figure 1.A, the temperature image registration is
performed in both steps, preparation and heating, by the optical flow
based image registration. Note the deformation of the left heated
area. Figure 1.B, shows the same data registered with the proposed
PCA-based approach which uses optical flow only during the prepa-
ration phase. Figure 1.C and 1.D show the corresponding thermal
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Fig. 1. Temperature (A & B) and thermal dose (C & D) maps ob-
tained on an ex-vivo calf liver submitted to a periodical translation
motion after 30 second of bipolar RF heating. A & C : motion is
estimated with the classic Cornelius and Kanade algorithm, B & D :
motion is estimated with the proposed PCA-based approach.

Fig. 2. Temperature temporal evolution in a pixel located in the
heated area (red arrow on figure 1.A). Blue curve : temperature is
registered with the classic Cornelius and Kanade algorithm, Red
curve: temperature is registered with the proposed PCA-based ap-
proach.

dose maps obtained. Pixels in which cellular destruction have been
achieved are reported in red. It can be observed that only temper-
ature maps registered using the proposed PCA-based realignment
leads to accurate thermal dose estimation, which permits in turn a
correct evaluation of the lesion. Figure 2 shows the temperature evo-
lution of the area indicated by the red arrow in figure 1.A. The lower
curve depicted temperature obtained with the classic Cornelius and
Kanade realignment, the upper curve corresponds to the temperature
evolution for the same data realigned with PCA. The distortion of
the hot-spot in figure 1.A demonstrates the effect of local intensity
variations due to heating on the optical-flow based image registra-
tion. Since the condition of conserved image intensity is violated,
miss-registration occurs. This miss-registration can lead to incorrect
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measures of the temperature evolution if a fixed point of interest is
observed, as shown in figure 2. Furthermore, the condition of con-
served image intensity also leads to a decreased robustness against
interference artifacts (not shown), which occur frequently on mag-
nitude images during high power RF or FUS-ablation. This can bias
the normalization of the image and thus leads to a complete fail-
ure of image registration. The proposed PCA-based method per-
forms well even on images with local intensity variations or image
artefacts since it requires neither a conserved image intensity nor a
normalized magnitude image, but rather relies on a global fit of the
principal components.

4. DISCUSSION AND CONCLUSION

Motion compensated MR-thermometry for thermal therapy has to
cope with RF-artifacts and relaxation-time changes of the monitored
tissue. While purely optical-flow-based realignment may lead to
temperature map computation errors for the case of local or global
intensity changes, PCA-based realignment can give for the case of
periodical motion accurately registered temperature maps, since it
relies on a global fit of the principal components.

Furthermore, for applications which require real-time image reg-
istration, PCA-based image realignment has computational advan-
tages, since the reduction of complex periodic motion patterns to the
most significant principal components reduces the degrees of free-
dom for the registration without a priori assumptions or simplifica-
tions of the form of the motion.

The estimated coefficients of the model provide a good descrip-
tion of the complex organ deformation and open/facilitate several
perspectives for applications, for example :

1. Real-time MR-controlled tissue ablation of moving organs
using a fully extra corporal heating source [19] (for example
a focused ultrasound device [20]).

2. The possibility to reduced the dimensionality of the observed
motion patterns with help of PCA facilitates the correlation
with the readings of external sensors such as respiratory gat-
ing sensors, electro-cardiograms or navigator echoes.
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