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ABSTRACT
There is an increasing interest in the interactions of factors
more directly related to the neutral activity in hemodynamic
response (HR) with respect to different experimental condi-
tions. In this work, we present a state-space approach, based
on the Balloon Model for blood oxygenation level dependent
(BOLD) responses, which allows the estimation of the hid-
den state variables and parameters of the hemodynamic re-
sponse at the same time. It offers an alternative strategy for
understanding the interactions of indirectly observed factors
and exploring the changes of biophysical model parameters
in variant experimental conditions.

Index Terms— hemodynamic response, joint estimation,
Unscented Kalman filter

1. INTRODUCTION

A major issue in the interpretation of the fMRI BOLD sig-
nal is that the measurements are only indirectly related to the
neural activity and interregional interactions from which they
derive. Hence, it is important to derive a quantitative under-
standing of those factors more directly related to the neutral
activity, such as changes in flow, oxygen extraction, blood
volumes and their combined effects. Such information is re-
quired to clarify the relationship between neutral activation
and experimental paradigm, and the significance of the ob-
served transients in the BOLD signal.
The Balloon Model has been developed as a comprehen-

sive biophysical model of hemodynamic modulation for de-
scribing the changes in physiological variables during brain
activation [1]. It combines the coupling mechanism of man-
ifold physiological variables, and has successfully simulated
pronounced transients in BOLD signal, including initial dips,
overshoots and a prolonged post-stimulus undershoot.
This model then has been extended to include the rela-

tionship of evoked neutral activity and blood flow [2], where
the model parameters are estimated in activated voxels using
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a Volterra kernel expansion. An alternative approach to char-
acterize the model dynamics is apply maximum likelihood [3]
or state-space strategy. [4, 5]
In this paper, we investigate the sensitivity of Balloon

model, i.e. how does the change of one parameter effect the
system output. This simple approach can reasonably decrease
the number of estimated variables, with no expenses to the
estimation accuracy. Subsequently, we present a novel, un-
scented kalman filter (UKF) approach for joint parameter and
state estimation of the nonlinear dynamics system.

2. METHODOLOGY

2.1. Balloon Model

The Balloon model describes the dynamics intertwinement
between the blood flow f , the blood venous volume v and
the veins deoxyhemoglobin content q. It consists of three
subsystem linkings: (1) neural activity to changes in flow;
(2) changes in flow to changes in blood volume and venous
outflow; (3) changes in flow, volume and oxygen extraction
fraction to changes in deoxyhemoglobin. Quantitatively:⎧⎪⎪⎨

⎪⎪⎩
f̈ = εu(t)− ḟ

τs
− f−1

τf

v̇ = 1
τ0

(f − v1/α)

q̇ = 1
τ0

(f 1−(1−E0)
1/f

E0

− v1/α q
v )

(1)

where ε is the neuronal efficacy; u(t) is the neuronal inputs; τs

reflects signal decay; τf is the feedback autoregulation time
constant; τ0 is the transit time; α is the stiffness parameter;
and E0 represent the resting oxygen extraction fraction. All
variables are expressed in normalized form, relative to the
resting values. Eq. 1 has a second-order time derivative, and
we can transform it into the standard form by introducing a
new variable ḟ = s, so that the time behavior of the system
can be tracked by following the motion of a point in a four-
dimensional x(t) = [ḟ , f, v, q]T state space.
Furthermore, the BOLD signal can be expressed as:{
y(t) = V0(k1(1− q) + k2(1−

q
v ) + k3(1− v)),

k1 = 7E0, k2 = 2, k3 = 2E0 − 0.2,
(2)
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Fig. 1: The predicted response to 1s stimulation for typical parameter values (ε = 0.54; τs = 1.54; τf = 2.46; τ0 = 0.98; α =
0.33; E0 = 0.34; V0 = 0.02.). The estimated response for θi+

0 and θi−
0 show as red, while the response for the reference θ0

show as blue. The corresponding output variations be also given in minipage caption. Δh represents mean response change.
.

appropriate for a 1.5 Tesla magnet [1], where V0 is the resting
blood volume fraction.
Statistical models usually can be explained as the fixed

effects, which capture the underline pattern, plus the random
error term. Thus, we rewrite Eqns. (1) and (2) as:

ẋ = f(x, θ,u,v), v ∼ N(0,Q) (3)

y = h(x, θ,w) w ∼ N(0,R) (4)

where f and h are nonlinear equations, x(t) = [ḟ , f, v, q]T

is the state of the system, θ = {ε, τs, τf , τ0, α, E0, V0} ∈ R
l

is system parameters, the neuronal inputs u represents system
input, v is the process noise, y is the observation vector, and
w is measurement noise.
Equations (3) and (4) constitute a so-called state-space

representation of the fMRI BOLD responses to a given stim-
ulation, and the goal now is to estimate a set of hidden state
variables x and parameter variables θ based on the observa-
tions vector y.

2.2. Sensitivity Analysis

The balloon model possesses strong nonlinear characteristics,
in which the effects of model parameters on the output strongly
interweave together. Since only a few measures per trial are
recorded, it is difficulty to estimate complexmodels with many
parameters. There are problems arising from such identifica-
tion of complex nonlinear system, that is, if R

l → R : x �→

h(x) is an bijection, in other words, if it one-to-onemaps one
distinct domain R

l to other distinct set R.
Friston et al. [2] reported typical values of the six param-

eters. Furthermore, we assume a plausible value of the resting
blood volume fraction V0 = 0.02. Thus we have a typical pa-
rameters set θ0 = {0.54, 1.54, 2.46, 0.98, 0.33, 0.34, 0.02}.
Given an neuronal input u(t), we aim to investigate howmuch
the system output is sensitive to changes in one parameter.
For each of the seven parameters θi

0 ∈ [0.8θi
0, 1.2θi

0],
we vary it by increasing (+) or decreasing (-) 20%, com-
pute the change of the system output, and plot the resulting
time course. Denoted θi+

0 the supremum limit set for pa-
rameter θi

0, and θi−
0 the infimum limit set for parameter θi

0,
we then have (the triangle inequality): ||h(θi+

0 ) − h(θi
0)|| ≤

||h(θi+
0 )|| + ||h(θi

0)||, where ||.|| denotes the L2-norm of a
vector. Thus, for the supremum limit set for parameter θi

0, the
corresponding change of the system output can be defined as:

�h+ =
||h(θi+

0 )− h(θi
0)||

||h(θi+
0 )||+ ||h(θi

0)||
≤ 1 (5)

�h− can be defined similarly for the infimum limit of param-
eter θi

0. We can now define the mean change of the system
outputΔh := (Δh+ + Δh−)/2, for changes of θi

0.
Figure 1 shows how do one parameter change the system

output by comparing responses to given 1s stimulation for a
set of typical parameter values. The estimated responses for
θi+
0 and θi−

0 are shown in red, while the responses for the
reference θ0 are shown as blue. The corresponding output

III - 146



Fig. 2: Time series of the estimated hidden states of hemodynamic response to auditory stimulation of emotional words. From
top to bottom: the fitted BOLD signal y, the first derivative of the blood flow ḟ , the blood flow f , the blood venous volume v
and the veins deoxyhemoglobin content q. Stimulus duration is shown as bar in blue.

variations are also given in minipage caption.
Our goal is to reasonably decrease the number of vari-

ables needed to be estimated, in order to relieve the coupling
between the different parameters, with no expenses to the es-
timation accuracy. As shown in Fig. 1, the system output
has less dependence on the changes of parameters τ0, α, and
E0. Thus, these parameters are assumed to be known, i.e.
τ0 = 0.98, α = 0.33, and E0 = 0.34, in the following pa-
rameter estimation efforts.

2.3. UKF Estimations of States and Parameters

A standard solution to state-spacemodels with Gaussian noise
is through the Kalman filter and its variants. It propagates
mean and covariance, of the state distribution to estimate the
state of a linear system, where a linear operator can be ap-
plied to yield accurate estimate of the mean and covariance
of the state. Unscented Kalman filter [6] is a extension of the
Kalman paradigm to nonlinear system that propagates the first
two moments through the unscented transformation.
The unscented transform (UT) deterministically chooses a

set of weighted sigma points that match the prior distribution,
and propagates them through the actual nonlinear function.
Then, the first two moments can be recalculated from these
propagated points. It can capture the posterior mean and co-
variance accurately to the 3rd order (Taylor series expansion)
for Gaussian noise process. The standard UKF implementa-
tion is briefly described in Algorithm 1 for state estimation
[7]. For joint filtering problem (state estimate and parameter
identification), the system state and parameters are concate-
nated into a single higher-dimensional joint vector, and then
a standard UKF is run on the joint state space to produce si-

multaneous estimates of the states x and the parameters θ.
Since the differential equations in Eqn. (3) are not soluble

analytically, we employ a fourth order Runge-Kutta method
to investigate the information about the trajectory, where step
length h is set to 0.2s to make the truncation error involved
sufficiently small. Furthermore, the vectorx(0) = {ḟ , f, v, q,
ε, τs, τf , V0}

T = (0, 1, 1, 1, 0.54, 1.54, 2.46, 0.02)T represents
the initial condition for the filtering approach [3].

2.4. Experiment

Total 128 acquisitions were made (RT=2s), in blocks of 8,
giving 16 16-second blocks. The condition for successive
blocks alternated between rest and auditory stimulation, start-
ing with rest. Auditory stimulation was emotionally neutral
words presented at a rate of 60 per minute.
We chose the largest activation blob as region of interest,

using routine fMRI analysis of SPM2, and defined the seed
cluster based on faces and edges but not corners so that this
voxel had 18 neighbors. The final seed time series were ex-
tracted by averaging the time series of the 19 voxels.

3. RESULTS AND DISCUSSION

Figure 2 shows the estimated time course of the hidden states
of hemodynamic response to auditory stimulation of emo-
tional words. The estimated flow signal indicates an approxi-
mately 100% increase, following a post-stimulus undershoot.
The blood venous volume signal has a similar response, but
with much less increase than flow signal to stimulus. The to-
tal deoxyhemoglobin response q is qualitatively the inverse
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of the blood flow f and the blood venous volume v. An ini-
tial transient decrease in deoxyhemoglobin can be observed.
Then, an increases in blood flow will cause the increase of
the amount of deoxyhemoglobin. All these predictions of the
Balloon model concur with the known physiological effects
in fMRI BOLD signal.
Furthermore, the obtained system parameters are θ =

{ε, τs, τf , V0}
T = {0.5415, 1.534, 2.467, 0.01}T . The val-

ues of these parameters are all between the ranges reported
in the literature [2]. These physiological plausible parame-
ters estimated in voxel may provide valuable information to
evaluate activation. However, the interference between pa-
rameters offer too much flexibility, and parameters in balloon
model are poorly identifiability. The accuracy of each param-
eter is still questionable. The fMRI signal alone may not al-
low in general to estimate all parameters, and further studies
are needed in elaborated experimental paradigm for the decor-
relation of parameters effects, other measurement modalities
for some physiological parameters and mathematical methods
for global optimization of multimodal function.
In conclusion, we presented a state space frameworkwhich

allows the estimation of the states and parameters of the hemo-
dynamic approach from BOLD responses. It makes possible
quantitative assessment of brain physiology.
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Algorithm 1: The Unscented Kalman filter (UKF)

• Initialization:

x̂0 = E[x0] P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

For k ∈ {1, . . . ,∞},
• Calculate sigma points:

Xk−1 = [x̂k−1 x̂k−1 + η
√

Pk−1 x̂k−1 − η
√

Pk−1]

• Time-update equations:

Xk|k−1 = F [Xk−1,uk−1]

x̂−k =

2L∑
i=0

W
(m)
i Xi,k|k−1

P−k =
2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k ][Xi,k|k−1 + x̂−k ]T + Rv

• Measurement-update equations:

Yk|k−1 = H[Xk|k−1]

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k|k−1

Pỹkỹk
=

2L∑
i=0

W
(c)
i [Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ŷ−k ]T + Rn

Pxkyk
=

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k ][Yi,k|k−1 − ŷ−k ]T

Kk = Pxkyk
P−1

ỹkỹk

x̂k = x̂−k +Kk(yk − ŷ−k )

Pk = P−k −KkPỹkỹk
KT

k

• Parameters: α determines the size of the sigma-point dis-
tribution, and is usually set to 1e − 4 ≤ α ≤ 1, β is con-
stant, equal to 2 for a Gaussian distribution, L is the states
dimension, λ = L(α2 − 1) and η =

√
(L + λ) is scal-

ing parameter,{Wi} is a set of scalar weights (W
(m)
0 =

λ/(L + λ), W (c)
0 = λ/(L + λ) + (1 − α2 + β), W (m)

i =

W
(c)
i = 1/{2(L + λ)}, i = 1,. . . ,2L). Rv is the process-

noise covariance,Rn is the observation-noise covariance.
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