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ABSTRACT
Magnetic resonance imaging of dynamic events such as cognitive
tasks in the brain, requires high spatial and temporal resolution. In
order to increase the resolution in both domains simultaneously, par-
allel imaging schemes have been in existence, where multiple re-
ceiver coils are used, each of which needs to acquire only a frac-
tion of the total available signal. In our approach, we regularly un-
dersample the signal at each of the receiver coils and the resulting
aliased coil images are combined (unaliased) using the neural net-
work framework. Data acquisition follows a variable-density sam-
pling scheme, where lower frequencies are densely sampled, and the
remaining signal is sparsely sampled. The low resolution images ob-
tained using the densely sampled low frequencies are used to train
the neural network. Reconstruction of the image is carried out by
feeding the high-resolution aliased images to the trained network.
The proposed approach has been applied to phantom as well as real
brain MRI data sets, and results have been compared with the stan-
dard existing parallel imaging techniques. The proposed approach is
found to perform better than the standard existing techniques.

Index Terms— Parallel Magnetic Resonance Imaging, under-
sampling, unaliasing, neural networks

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a very popular medical imag-
ing modality, due to its non-invasive nature and excellent soft-tissue
contrast. MR signal acquisition occurs in the spatial-frequency do-
main (called k-space), of the object being scanned. The k-space
samples are used to construct the image of the object. Spatial lo-
calization is achieved using magnetic field gradients applied in all
three dimensions, which modulate the precession frequency of the
protons as a function of space. The gradient along Z is called, slice
selection, which determines the cross-section of interest. The gradi-
ents along Y andX, called phase and frequency encoding gradients,
determine in-plane resolution and field of view. To create an MR im-
age, we need to sample the two-dimensional k-space (Δkx, Δky).
Here,Δkx = γ

2π
GxΔt andΔky = γ

2π
Gyτpe, where γ is a constant

associated with hydrogen protons,Gx is the frequency encoding gra-
dient amplitude,Δt is the sampling period,Gy is the phase encoding
gradient step size, and τpe is the phase encoding gradient duration.
In order to obtain an image with good spatial resolution, we need

to acquire data farther out in k-space, implying larger number of
phase encoding steps. However, an inherent limitation in MR imag-
ing is that only one point in k-space can be acquired at any given
instant of time. Hence, acquisition of more points would imply loss
of resolution in time. Alternately, increasing Δky can reduce the
number of phase encoding steps but at the cost of aliasing. This is
the classic trade-off between spatial and temporal resolution in MRI,
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Fig. 1. Effect of downsampling (a) True image (b) Aliased image
obtained by downsampling by 2

which is typically addressed using partial data reconstruction or par-
allel imaging techniques. Parallel imaging involves use of multiple
receiver coils. Here, acceleration is achieved by regular undersam-
pling and the resulting aliasing resolved by making use of redundant
information collected from multiple parallel receivers. The final un-
aliased reconstructed images can be obtained by combining the sig-
nals either in image domain or in k-space. Existing techniques differ
in aspects such as the domain they work in, the assumptions they
make, and the nature of errors that they generate.

2. PARALLEL IMAGING

Parallel imaging was designed as a method to reduce the number of
phase-encoding steps, the most time-expensive factor in MR Imag-
ing. Here, multiple receiver coils are used in order to accelerate
imaging. Each receiver coil is characterized by its spatial sensi-
tivity function, which conveys information about the relative posi-
tion of the origin of the received signal. Each coil provides the
coil-weighted version of the image, all of which eventually can be
combined to obtain the image reconstruction. It is well-established
that if each of the receiver coils could acquire the entire k-space,
then the best estimate of the true k-space would be the “sum of
squares” (SoS). However, when the k-space at each of the receiver
coils is sparsely sampled, then we need to devise ways to combine
the acquired signals, in order to reconstruct the image. Methods like
SENSE [1], SMASH [2], PILS [3], GRAPPA [4] are the known stan-
dard techniques used in parallel imaging.

2.1. Current techniques

SENSE combines the acquired signal in the image domain. Here,
coil sensitivity information is used to combine the coil-weighted
aliased images. Let us assume i1 and i2 to be the true intensities
at the pixels shown in Fig.1(a). Let the coil sensitivities at those
points be c11, c12 and c21,c22 for coils 1 and 2 respectively. The
resulting intensity at the pixel marked in Fig.1(a), for coil 1 is say
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α1, and for coil 2, α2. Then we know,

c11i1 + c21i2 = α1

c12i1 + c22i2 = α2

The framework is represented as a linear system of equations, which
will be over-determined, if the downsampling factor is less than the
number of receiver coils. SMASH is a k-space technique, where the
composite k-space is generated using signals acquired in the entire
array of receiver coils.

C
total(x, y) =

X
j

njCj(x, y) ≈ expi(mΔkyy) (1)

where, nj are complex weight factors, m is an integer, and Δky is
the resolution along ky . Here, the coils are designed such that the lin-
ear combinations of their acquisitions generate the missing harmon-
ics. However, it turns out that the harmonic fit may not be exactly
sinusoidal, leading to artifacts in reconstruction. GRAPPA is also a
k-space technique, which again linearly combines the acquired lines
to generate the missing lines. Here, a bunch of lines at the central
k-space, called auto-calibration lines (ACS) are acquired along with
the usual sparse acquisition. A “block” is defined as a single ac-
quired line and (A−1)missing lines, where A is the downsampling
factor.

Sj(ky − mΔky) =
LX

l=1

Nb−1X
b=0

n(j, b, l, m)Sl(ky − bAΔky) (2)

where Sj(ky) is the signal in coil j at line ky , Nb is the number
of blocks used in the reconstruction, l counts through the individ-
ual coils and b counts through the individual reconstruction blocks.
The Nb lines which are separated by AΔky are combined using the
weights n(j, b, l, m) to form each line, corresponding to a reduction
factor A. This process is repeated for each coil in the array, resulting
in L uncombined single coil images, which can be combined using
the known optimal ways. A technique that works in image domain
utilizing B-splines [5] for reconstruction in parallel imaging, was
recently proposed. Here, coil-weighted aliased images are linearly
combined to obtain the final image. The reconstruction operator is
determined by using the low-resolution version of the signal. The
same reconstruction operator is applied to the high-resolution ver-
sion. The coefficients that linearly combine, are expressed as a linear
combination ofB-splines. The parameters are obtained by minimiz-
ing the error for the low-resolution acquisition.

In the proposed method, we make use of the above problem for-
mulation, but solve it using neural network framework. In this ap-
proach, we do not need to make any assumptions of linearity or coil-
sensitivities. An overview of the proposed system is shown in Fig.2.
The rest of the paper is organized as follows. Section 3 explains the
proposed approach. Section 4 discusses the data used and results.
The conclusion of the paper is given in section 5.

3. PROPOSED APPROACH

In standard MRI, a single coil with homogeneous spatial sensitivity
(body-coil) is used. The image (body-coil image) acquired this way
serves as the benchmark to compare the reconstructed image using
reduced data with parallel imaging schemes. The notations used here
are taken from the paper [5]. The body-coil image is assumed to be
the true image S. In parallel MRI, several receiver coils are used

Fig. 2. Overview of the proposed method

simultaneously to acquire the signal. The image acquired from the
lth coil, Sl is given as,

Sl(x, y) = Cl(x, y)S(x, y) (3)

where Cl is the complex sensitivity of the lth coil.
It is well-known that sparse sampling in k-space causes aliasing

in image domain. In the event of rectangular undersampling by fac-
torM whereNy is the maximum number of phase encodes possible,
the aliased image obtained at the lth coil, SA

l is given by,

S
A
l (x, y) =

M−1X
m=0

Sl(x, y + m
Ny

M
) (4)

=

M−1X
m=0

Cl(x, y + m
Ny

M
)S(x, y + m

Ny

M
)

where, m = 0, 1, · · · , M − 1 We assume the final reconstruction
to be some arbitrary function F of the aliased coil images. This is
the function that we have set out to find. It must be noted that no
assumptions are made about the nature of the function F .

Ŝ(x, y + m
Ny

M
) = F

“
S

A
l (x, y)

”
(5)

Constraining function F in equation (3), given by

F

„
S

A
l (x, y + m

′ Ny

M
)

«
=

j
Ŝ(x, y + m

Ny

M
) for m = m′

0 for m �= m′

(6)

This forces the image to be split into as many blocks as the
downsampling factor. This condition ensures that any reconstructed
pixel from a given block, could only have been generated from pix-
els in the corresponding block from the coil-weighted aliased im-
ages. This condition is incorporated by designing as many neural
networks as the undersampling factor.

3.1. Acquisition scheme

Full k-space 8-coil data was acquired for the experiments. Points
from the acquired data were selectively chosen to form the testing
and training data sets. A variable-density sampling scheme was cho-
sen, as shown in Fig.3. The “sum of squares”(SoS) image was as-
sumed to be the gold standard image. The central k-space lines (32,
in our experiments) were densely sampled at each of the receiver
coils. The corresponding SoS reconstruction was the blurred una-
liased image. The densely sampled lines were further subsampled to
form the blurred, aliased coil images. The blurred aliased coil im-
ages along with the corresponding SoS image, form the training data
set to the neural network. This data set establishes the functional
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Fig. 3. Sampling scheme

relation between the aliased images and the corresponding unaliased
version. The weights associated with the neural network topology
are now determined. The trained neural network is now fed with
full-resolution aliased coil images, to obtain the final image recon-
struction.

3.2. Neural networks

Neural networks have emerged as a powerful mathematical tool for
solving various problems like pattern classification, medical imag-
ing due to their suitability for mapping complex characteristics, and
learning. Of the many neural network architectures proposed, single
hidden layer feed-forward network with sigmoidal or radial basis
function are found to be effective for solving a number of real-world
problems. The free parameters of the network are learned from the
given training samples using gradient descent algorithm.

The architecture of the neural network used, comprises of an in-
put layer, a hidden layer with 98 neurons and an output layer. The
input features are 18-dimensional, of which 16 are derived from the
complex intensities of the 8 (split complex numbers as real, imagi-
nary) aliased coil images. The remaining 2 components are used to
index the position of the pixel. Each pixel position of the aliased
images represents a feature vector.

3.3. Validation criterion

Errors in image reconstruction are quantified using error images,
with indices like PSNR and a similarity index to compare the close-
ness of the reconstructed image against the original image, called
“Structural Similarity” index (SSIM) [6]. This index penalizes loss
in structural correlation, intensity and contrast. This is a well-known
Full-Reference image quality metric, widely used to quantify image
quality, given a reference image and its distorted version.

4. RESULTS

4.1. Phantom data

The proposed technique was applied to the standard “Shepp-Logan”
phantom. Three separate cases, the standard phantom, Phantom cor-
rupted with complex additive Gaussian noise and Phantom with a
fine grid-structure super-imposed were studied. The distinct struc-
tures in the phantom reconstruction are separately assessed. A com-
parison of the SSIM indices obtained using the proposed method, as
well as the standard existing techniques, is as shown in table1, all
of which are carried out for downsampling factor of 4. The com-
parison of the SSIM indices for the noisy-phantom case is shown
in table 2. A grid of varying thickness and intensities, spread out,
was superimposed on the phantom to determine the abilities of the
techniques to reproduce fine structures. The comparison of PSNR
between the techniques is shown in table.4. It can be seen that PSNR
obtained using the proposed approach and GRAPPA are quite com-
parable, while that obtained using SENSE is far below them both,
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Fig. 4. Original Image (color scale : 0 to 1) (a)Phantom (b) Real MR
structural brain

Table 1. Comparison of SSIM Indices for distinct regions of the
phantom

Region Proposed GRAPPA SENSE

1 0.8919 0.6693 0.4647

2 0.5237 0.3954 0.5468

3 0.5866 0.4055 0.7406

4 0.9443 0.1320 0.3883

5 0.8919 0.6693 0.4647

6 0.9912 0.6683 0.3871

7 0.3902 0.8369 0.1914

8 0.7378 0.6692 0.3212

9 0.7780 0.6682 0.4781

especially in the noisy case since SENSE performs best only under
ideal conditions. However, when visually assessed it can be seen that
the reconstruction obtained using the proposed technique, is better.
The nature of errors of the proposed method depends on the spatial
location, spread and intensities, as shown by the poor performance
on region 7, which is a small low-intensity oval region squeezed be-
tween two similar regions (see Fig. 4(a)).

4.2. Real data

The proposed approach was applied on real data sets of brain MR
images. 4 volumes of fmr data sets, and the structural brain data set
(8-coil data) available on [7], were utilized. All simulations were
carried out in matlab. The data matrix was of size 256 × 256. The
central 32 lines were densely sampled, while the remaining k-space
was sparsely sampled, depending on the downsampling factor. Fig-
ure 5 shows comparison of reconstruction for downsampling factor
of 4, for the structural brain image shown in Fig. 4(b). The same
sparsely sampled data was used for reconstruction using the stan-
dard existing parallel imaging techniques, SENSE and GRAPPA, for
downsampling by 4 and 32 densely sampled low k-space lines.

The comparison between error images shows that errors obtained
using SENSE and GRAPPA reconstruction, are more than that ob-
tained using the proposed approach. While errors in GRAPPA recon-
struction are spread out, errors in SENSE reconstructions are local-
ized. The proposed method results in errors resembling GRAPPA.
In terms of PSNR, the proposed approach gives a gain in PSNR of
10dB over SENSE, while it is comparable with that obtained using
GRAPPA.
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Table 2. Comparison of SSIM Indices for distinct regions of the
phantom, corrupted with noise

Region Proposed GRAPPA SENSE

1 0.8025 0.6735 0.4633

2 0.5526 0.4811 0.5895

3 0.6254 0.5111 0.7670

4 0.8433 0.1403 0.3920

5 0.9340 0.6721 0.3860

6 0.8089 0.7808 0.3164

7 0.2757 0.8366 0.1825

8 0.6642 0.6721 0.3176

9 0.7293 0.6905 0.4846

Table 3. Comparison of SSIM Indices for distinct regions of the
phantom, with grid super-imposed

Region Proposed GRAPPA SENSE

1 0.7919 0.5664 0.4003

2 0.5612 0.3620 0.4586

3 0.6230 0.4366 0.5778

4 0.8822 0.0558 0.3687

5 0.9163 0.5980 0.3631

6 0.8127 0.6256 0.2727

7 0.3705 0.7663 0.2186

8 0.6603 0.5225 0.3258

9 0.7211 0.5849 0.4242

5. CONCLUSION

In this paper, we have proposed a method to reconstruct images for
parallel magnetic resonance imaging, in neural network framework.
Variable density data acquisition is carried out at all the receiver
coils. Low frequencies are densely sampled while the remaining
frequencies are sparsely sampled. Low frequency data serve to train
the network to determine the associated weights. This approach was
tested on phantom as well as real brain MR images and compared
with the standard existing parallel imaging techniques. Results were
evaluated using criteria like PSNR and Structural similarity index.
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