
SUPERRESOLUTION PARALLEL MRI

1Ricardo Otazo, 1Ramiro Jordan, 2 Fa-Hsuan Lin and 1,3Stefan Posse

1Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, USA
2Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA

3Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA

ABSTRACT

Parallel MRI reconstruction is formulated as a superresolu-
tion problem using coil sensitivities acquired with higher spa-
tial resolution than the actual image. Array coils with a large
number of small elements that present very localized and highly
modulated sensitivity functions will form an encoding basis
to estimate high k-space components from limited k-space
acquisitions. The method is proposed for spatial resolution
enhancement of intrinsic low-resolution modalities such as
spectroscopic imaging and functional MRI where the coil sen-
sitivities are varying withing the image voxel.

Index Terms— MRI, parallel imaging, superresolution.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) methods involve imag-
ing objects with high spatial frequency content in a limited
amount of time. Conventional Fourier encoding, where the
spatial frequency domain (k-space) of the object is sampled
uniformlyusing a Cartesian grid, is very time consuming since
only one k-space position is sampled at a time. Therefore, in-
formation over only a limited k-space range is usually avail-
able in practice due to time constraints. The lack of high spa-
tial frequency information leads to limited spatial resolution
and ringing when the Fourier transform is applied to recon-
struct the image [1]. Constrained image reconstruction tech-
niques [2] have been used to achieve superresolution, this is
to estimate high frequency components without actually mea-
suring them using prior information. For example, the nite
spatial support of an image has been used to perform extrapo-
lation of k-space [3]. Parametric modeling using a high reso-
lution reference and a series of low resolution acquisitions [4]
has also been employed for superresolution reconstruction.

Parallel MRI (PMRI) [5, 6] has been introduced as a method
to accelerate the encoding process using an array of receiver
coils with spatially-varying spatial sensitivities. The knowl-
edge of coil sensitivities allows for reconstruction of sub-sampled
data provided by the array. This acceleration could be used to
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increase k-space coverage in order to obtain a reconstructed
image with higher spatial resolution. However, a larger cover-
age of k-space in the acquisition will produce a SNR loss that
can be prohibitive for certain MRI modalities such as spec-
troscopic imaging. Therefore, superresolution reconstruction
is advantageous to restore high spatial frequency components
without reducing the SNR of the low resolution acquisition.

This work presents a novel method to achieve superres-
olution MRI reconstruction using parallel imaging concepts.
Additional information to increase the spatial resolution of the
acquisition is obtained from coil sensitivities acquired with
higher spatial resolution. The technique is proposed for spa-
tial resolution enhancement of inherent low-resolution MRI
modalities such as spectroscopic imaging, which is constrained
by low SNR, and functional MRI, which is constrained by the
need for high temporal resolution.

2. METHODS

2.1. Superresolution Parallel MRI

The idea behind superresolution parallel MRI is to use coil
sensitivity maps with higher spatial resolution to estimate high
spatial frequency components of the object function from lim-
ited k-space acquisitions provided by the array coil (Fig. 1).
In other words, the method will transfer the high spatial res-
olution of the sensitivity pro les to the low spatial resolution
acquisition.

Fig. 1. Superresolution parallel MRI idea: transference of
spatial resolution from the coil sensitivities to the acquisition.
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The working hypothesis is that the coil sensitivities will
provide extended k-space information. Even though this pro-
vides only limited k-space expansion for commercially avail-
able arrays with a small number of elements and therefore
very smooth sensitivity functions, recently developed array
designs with a large number of small elements will provide
very localized information in the spatial domain that will in-
crease k-space coverage of the sensitivity function [7].

The mathematical formulation of the method follows the
description of parallel MRI reconstruction with a different
sampling pattern. For superresolution parallel MRI, imaging
data is acquired with limited k-space coverage and coil sen-
sitivity data is acquired with a larger range of k-space values
(Fig. 1). Both data sets are acquired at the Nyquist rate. In
addition to the spatial encoding provided by the gradients, the
signal acquired by each coil is sensitivity encoded and can be
represented as:

Yl(k) =
∫

r
s(r)cl(r)ej2πk·rdr, l = 1, 2, ..., Nc ; (1)

where r is the position vector, k = γ
∫ τ

0
G(t) dt is the spatial

frequency vector determined by the gradient vector G(t), s(r)
is the object function, cl(r) is the complex-valued spatialy-
varying coil sensitivity and Nc is the number of coils. Con-
sidering the discretization of the object function to N r points
(target resolution), and the acquisition of Nk k-space points,
a discretized version of Eq. (1) is given by:

Yl,n =
Nr∑

m=1

s [rm] cl [rm] ej2πkn·rm , (2)

where n = 1, 2, ..., Nk is the k-space index, m = 1, 2, ..., Nr

is the object index and (l = 1, 2, ..., Nc) is the coil index.
Note that if we sample at the Nyquist rate, the acquisition of
low resolution images can be represented using Nk < Nr.
This encoding equation can be expressed using a matrix for-
mulation:

y = E s, (3)

where y is the observation vector (NkNc ×1), E is the encod-
ing matrix (NkNc × Nr) and r is the object vector (Nr × 1).
The entries of the encoding matrix are given by the hydrid en-
coding basis cl(rm)ej2πkn·rm . Note that the encoding equa-
tion provides a forward model to describe the acquisition of
low resolution images (Nk k-space points). The solution to
the inverse problem will provide an image with the resolution
of the coil sensitivity maps (Nr k-space points).

A direct solution of the parallel imaging problem is com-
putationally intensive. More computationally tractable so-
lutions can be achieved using uniform sampling, where the
full reconstruction can be modeled as a series of 1-D recon-
structions. Assuming a 1-D model with uniform sampling of
k-space, the dicretized signal received by each coil is repre-

sented as:

Yl,n =
Nr−1∑
r=0

s[r]cl[r]ej2πnΔk r, (4)

where Δk is the Nyquist rate. To achieve superresolution re-
construction, the coil sensitivity maps consist of Nr points
(Nr > Nk). This encoding equation can be expressed using
the following matrix formulation:

Yl = UHdiag {cl} s, (5)

where Yl is the the observation vector for each coil (Nk × 1),
the elements of UH (Nk ×Nr) correspond to the exponential
terms in Eq. (4), the Nr × Nr diagonal matrix diag {cl} con-
tains {cl[r]} in the main diagonal and s is the the object vector
(Nr × 1). The rows of UH correspond to the columns of the
DFT matrix operator, and are mutually orthogonal. However,
due to limited sampling the columns of UH are not longer or-
thogonal. In the case of 2D imaging and sub-sampling along
two dimensions, the encoding equation can be represented as:

Yl =
(
UH ⊗ PH

)
diag {vec {cl}} s, (6)

where UH and PH represent the sampling pattern along the
two spatial dimensions and⊗ refers to the Kronecker product.
The full linear system is formed by concatenating the signals
from each coil:⎡

⎢⎢⎢⎣

Y1

Y2

...
YNc

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(
UH ⊗ PH

)
diag {vec {c1}}(

UH ⊗ PH
)
diag {vec {c2}}
...(

UH ⊗ PH
)
diag {vec {cNc}}

⎤
⎥⎥⎥⎦ s, (7)

which is in the same form as Eq. (3). The linear system can
be solved using the minimum variance least squares solution
[8]:

ŝ =
(
EHΨ−1E

)−1
EHΨ−1y. (8)

where Ψ is the noise correlation matrix of the array coil and
H is the Hermitian conjugate operator.

2.2. Point Spread Function (PSF)

Reconstruction from limited k-space data can be represented
as the convolution of the true object function s(r) with the
point spread function of the reconstruction method h(r) [1]:

ŝ(r) = s(r) ∗ h(r). (9)

The properties of a linear reconstruction technique such as the
one proposed here can be characterized using the PSF. The
width of the main lobe represents the spatial resolution and
the amplitude of the side lobes represents the level of con-
tamination from adjacent voxels.

The PSF will be computed by reconstructing simulated
data from a source point, e.g. s(r0) = δ(r0) where δ is the
Dirac function and r0 is the position of the source point. Spa-
tial resolution will be computed using the full width at half
maximum (FWHM) of the main lobe of the resulting PSF.
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2.3. Experiments

2.3.1. Measurements

Phantom and human brain data were acquired using a gradient-
echo sequence with a 32-channel array coil at 3 Tesla [7].
Phantom data was acquired using a 128 × 128 spatial matrix
and a eld of view (FOV) of 240 × 240 mm2, resulting in
a spatial resolution of 3.5 mm2. Human brain data was ac-
quired using a 256 × 256 spatial matrix and a eld of view
(FOV) of 256 × 256 mm2, resulting in a spatial resolution of
1 mm2. Reconstruction of the high resolution multi-channel
human brain data was performed using sum-of-squares com-
bination [9] (Fig. 2.c).

2.3.2. High resolution coil sensitivity maps

Coil sensitivity information were estimated at the high spatial
resolution of the acquisition. Sensitivity pro les were com-
puted following the method presented by Pruessmann et al.
[8]. Raw sensitivity maps were obtained dividing the image
from each coil by the high resolution reconstruction. Finally,
3rd order polynomial tting was used to re ne the maps.

2.3.3. Simulations

Simulated data were created using the high resolution sensi-
tivity functions from the phantom data resulting in a data set
with 32 channels. Simulation A: Multi-coil data was gener-
ated by multiplying a numerical phantom (Fig. 3) with the
sensitivity pro les and adding Gaussian noise. Simulation B:
Multi-coil spectroscopic imaging data was generated in the
same way by simulating a phantom with compartments for
water (4.7 ppm), NAA (2.0 ppm) and lipids (1.3 and 2.0 ppm).
Spectroscopic imaging data consists of spatial and spectral in-
formation, e.g. for each pixel we have a spectrum. The lipid
resonances were located in a ring at the periphery of the phan-
tom and assuming an concentration of 5 to 1 respect to NAA
(Fig. 4). Images were obtained by spectral integration around
the peak of interest.

2.3.4. Data reconstruction

Low resolution data was obtained from the central 32x32 k-
space matrix. Reconstruction of the low resolution multi-coil
data was performed using sum-of-squares [9]. For compari-
son purposes, this result was interpolated to a 128x128 spatial
grid using Fourier interpolation (zero-padding). Superresolu-
tion parallel MRI reconstruction was applied to the low reso-
lution data using the high resolution coil sensitivity maps.

3. RESULTS

The proposed method for superresolution using parallel MRI
reconstruction highly improved the spatial response of con-

ventional Fourier reconstruction, presenting a PSF with re-
duced main lobe width and highly attenuated side lobes (Fig.
2.a). The FWHM of the main lobe has been reduced from 5.0
to 1.63 poits which indicates a gain in spatial resolution by a
factor of 3.

Superresolution PMRI reconstruction of the numerical phan-
tom (Fig. 2.b) and the human brain (Fig. 2.c) also presented
an improved spatial response with better de ned spatial pat-
terns and edges, and reduced ringing in the reconstructed im-
age. For the human brain data set we can see improved tissue
layers (arrows in Fig. 2.c).

Lipid contamination due to the side lobes of the PSF were
also highly reduced in the simulated spectroscopic imaging
experiment (Fig. 4). The NAA image presents a improved
reconstruction using the superresolution PMRI approach.
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Fig. 2. (a) PSF comparison for superresolution pMRI and
conventional Fourier reconstruction along the x dimension.
Reconstruction results for: (b) simulated phantom and (c) in
vivo experiment.
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Fig. 3. Simulated spectroscopic imaging experiment. (a) Spa-
tial distribution of water, NAA and lipid inside the simulated
phantom. (b) Corresponding spectral peaks. (c) NAA and
lipid images at 2.0 ppm. Note that ringing and lipid contami-
nation are highly reduced when using superresolution PMRI.

4. DISCUSSION

This work demonstrated feasibility of superresolution parallel
MRI reconstruction for low spatial resolution imaging where
the coil sensitivities are varying within the image voxel. High
k-space components were estimated from limited k-space ac-
quisitions using high resolution coil sensitivities as prior in-
formation. The method transferred the high resolution of the
coil sensitivities to the image acquired with lower resolution.
The array coil with 32 elements at 3 Tesla provided very lo-
calized and highly modulated coil sensitivity pro les which
translated to larger coverage of k-space. However, small sur-
face coils present SNR reduction in central zones that could
limit the spatial coverage of the method. We are in the process
of implementing the technique using a 32-channel array coil
at 7 Tesla which will provide higher sensitivity and stronger
spatial modulation of the sensitivity functions [10]. Future
work also includes the application of the technique to human
brain spectrospic imaging data and functional MRI, where the
acquisition of a high resolution coil sensitivity information
does not represent a time penalty due to the large number of
repetitions in the experiment.
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