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ABSTRACT

In our previous work [1], we proposed a construction of critically
sampled perfect reconstruction transforms with directional vanish-
ing moments (DVMs) imposed in the corresponding basis functions
along different directions, called directionlets. Here, we combine
the directionlets with the space-frequency quantization (SFQ) image
compression method, originally based on the standard two-dimensio-
nal (2-D) wavelet transform (WT) and proposed in [2]. We show that
our new compression method outperforms the standard SFQ as well
as the state-of-the-art compression methods, like SPIHT and JPEG-
2000, in terms of the quality of compressed images, especially in a
low-rate compression regime. We also show that the order of compu-
tational complexity remains the same, as compared to the complexity
of the standard SFQ algorithm.

Index Terms— Directional transforms, Directional vanishing
moments, Image coding, Wavelet transforms

1. INTRODUCTION

The standard two-dimensional (2-D) wavelet transform (WT) has
become very successful in image compression in recent years be-
cause it provides a sparse multiresolution representation of natural
images due to the presence of vanishing moments in the high-pass
(HP) filters (enforced by imposing zeros at ω = 0) [3]. This trans-
form is conceptually simple and has a low computational complexity
because of the simple separable one-dimensional (1-D) filtering and
subsampling operations. For these reasons, the 2-D WT has been
adopted in the image compression standard JPEG-2000.

However, the performance of the 2-D WT is limited by the spa-
tial isotropy of the basis functions and the construction only along
the horizontal and vertical directions, which does not provide enough
directionality. For this reason, the standard 2-D WT fails to pro-
vide a sparse representation of oriented 1-D discontinuities (edges
or contours) in images [3]. These features are characterized by a
geometrical coherence that is not properly captured by the isotropic
wavelet basis functions. Thus, to provide an efficient representa-
tion of contours, the basis functions are required to have directional
vanishing moments (DVMs) along more than the two standard di-
rections. Several previous approaches, like curvelets [4], contourlets
[5] and bandelets [6], have already addressed this non-trivial task.
However, these methods have higher complexity than the standard
2-D WT and require non-separable filtering and filter design. Fur-
thermore, these transforms are often oversampled, thus, making it
non-trivial to have efficient image compression methods.

Several recently proposed methods use the lifting scheme in im-
age compression algorithms. This scheme is exploited in [7], where
transform directions are adapted pixel-wise throughout images. A
similar adaptation is used in [8] and [9], but with more different di-
rections (9 and 11, respectively). In addition, the method in [8] uses
the pixel values at fractional coordinates obtained by interpolation.
However, even though these methods are computationally efficient
and provide good compression results, they show a weaker perfor-
mance when combined with zerotree-based compression algorithms.

In our previous work [1], we designed critically sampled aniso-
tropic basis functions with DVMs across any two directions with ra-
tional slopes, which we called directionlets. Our basis construction
retains the separable processing and the computational simplicity of
the standard 2-D WT. We showed that directionlets outperform the
standard 2-DWT in non-linear approximation of images while keep-
ing a similar complexity.

In [10], we showed that directionlets imrove the performance of
the compression method based on the correlation of wavelet coef-
ficients across scales using zerotrees [11]. Here, our main goal is
to design and implement a compression method based on the space-
frequency quantization (SFQ) [2] using directionlets instead of the
WT. We show that our new method outperforms the standard SFQ
as well as the state-of-the-art image coding algorithms, like SPIHT
[12] or JPEG-2000. At the same time, our method preserves the
same order of computational complexity as the standard SFQ.

In Section 2, we briefly review the main principles of the stan-
dard SFQ method. Then, in Section 3, we present the details of
our new compression method, which combines directionlets and the
standard SFQ. We compare the results achieved by our method to
the results obtained by the standard SFQ, SPIHT and JPEG-2000 in
Section 4. Finally, we conclude in Section 5.

2. SPACE-FREQUENCY QUANTIZATION

The SFQ image compression method for images was originally pro-
posed in [2]. Here, because of lack of space, we only briefly revisit
the basic concept of the SFQ.

The main idea behind SFQ is to minimize a mean-square er-
ror (MSE) distortion measure of the reconstructed image for a given
bit-rate constraint using Lagrangian optimization. The algorithm
exploits the multi-scale correlation among wavelet coefficients pro-
duced by the standard 2-D WT. The coefficients are structured in
multi-scale trees (zerotrees) so that one tree consists of the coeffi-
cients from different transform scales at the same spatial location
(see Fig. 1). Each tree has a root at the corresponding coefficient
from the coarsest scale. The same tree-structure is used in [11],
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Fig. 1. The wavelet coefficients are grouped in zerotrees to exploit the
multi-scale correlation. The zerotrees have originally been proposed in [11].
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Fig. 2. The standard SFQ encoding consists of four blocks: the 2-D WT,
SFQ optimization, quantization and entropy coding. The task of the SFQ
optimization is to pick the optimal subset of retained transform coefficients
in a R-D sense. These coefficients are quantized in the subsequent step. The
locations of retained coefficients are transmitted as a side information.

whereas a similar one is exploited in [12].
In the process of the SFQ encoding, a subset of wavelet coeffi-

cients is discarded (set to zero), whereas the rest is quantized using
a single uniform scalar quantizer. The main tasks of the SFQ are (1)
to select the subset of coefficients that should be discarded and (2) to
choose which quantization step size should be used to quantize the
retained coefficients. In both tasks, Lagrangian optimization is used
to select the optimal solution in a rate-distortion (R-D) sense. The
locations of the retained coefficients are encoded and sent as a map
information, whereas the quantized magnitudes are entropy coded.
The block diagram of the encoder is shown in Fig. 2.

The optimization process consists of three phases: (a) space-
frequency tree pruning, (b) predicting the map and (c) joint optimiza-
tion of the quantizers. Notice that, even though the optimal result of
the tree pruning is influenced by the bit-rate spent for predicting and
encoding the map in (b), the optimization process in (a) is assumed
to be independent and is updated in the subsequent phase.

In the first optimization phase (a), all nodes in the full depth
multi-scale tree are checked bottom-up if it is cheaper in a R-D
sense to keep or to zero out the descendant nodes. The process is
iterated on the resulting pruned multi-scale tree until the conver-
gence is reached, that is, until no new node is pruned. In the sec-
ond phase (b), the locations of the retained nodes are encoded as a
map information using a predictive scheme based on the variance of
parent nodes. Finally, in the last phase (c), the previous optimiza-
tion process (the phases (a) and (b)) is run exhaustively for each
value of the quantization step size q from an ad-hoc optimized list
{q : q = 7.5 + 0.1 · k, k = 1, 2, . . . , 245} for the scaling and
wavelet coefficients and the value that minimizes the Lagrangian
cost is chosen as optimal. The quantized coefficients are encoded
using an adaptive entropy coder.

3. COMPRESSION ALGORITHM
Images have geometrical oriented features that vary over space. For
that reason, we have to adapt the DVMs of directionlets locally to
each neighborhood. Recall that directionlets can have up to 2DVMs.1

Thus, this implies a need for spatial segmentation as a way of par-
titioning image into smaller segments with one or a few dominant
directions per segment. In our algorithm, we use the quad-tree seg-
mentation, as the simplest method in the sense of encoding effi-
ciency. The transform directions (and DVMs) are adapted indepen-
dently in each spatial segment allowing for more efficient captur-
ing of geometrical information. However, the separate processing
of segments may cause some blocking effect in the compressed im-
ages, especially noticeable at low bit-rates. Hence, a post-processing
is required to remove this effect, as explained in the sequel.

Next, we present the basic concept of our compression algorithm
(see [13] for detailed explanations). Then, we give a brief overview
of the deblocking algorithm originally proposed in [14] for JPEG
compressed images and, finally, we analyze the computational com-
plexity of the full method.

3.1. Definition of the Algorithm
Even though the construction of directionlets, as proposed in [1],
allows for anisotropy and DVMs along any two directions with ra-
tional slopes, we apply two restrictions on the transform: (1) only
the isotropic realizations are allowed and (2) the transform direc-
tion pairs are taken only from the set D = {(0◦, 90◦), (0◦, 45◦),
(0◦,−45◦), (90◦, 45◦), (90◦,−45◦)}. The reason for the first re-
striction is in a better compression performance with natural images
in the case of isotropic segmentation (like quad-tree). The second re-
striction is imposed to prevent the constructions of directionlets that
lead to more than one coset in the transform, since such construc-
tions result in a less efficient image representation (see [1] for more
details).

The depth of the multi-scale decomposition in the transform is
ad-hoc optimized to 5 levels. The filtering operations are imple-
mented using the 1-D biorthogonal ”9-7” filter-bank [15]. Since
a wider interval of the target compression bit-rates is allowed, as
compared to the standard SFQ, the quantization step size is chosen
from an extended list of values. The new extended list is given by
Q = {5.0 + 0.5 · k, k = 1, 2, . . . , 245}.

The compression algorithm consists of several embedded op-
timization phases based on minimization of the Lagrangian cost.2

First, spatial segmentation is applied on the entire image in the orig-
inal domain until a preselected maximal depth is reached and, then,
the transform is applied on each segment separately using the trans-
form directions from the list D. For each segment and combination
of transform directions, the optimal encoding is found following the
same principles as in the standard SFQ optimization phases [2] (re-
ferred to in Section 2 as phases (a) and (b)). The best transform

1For the reasons of lack of space, we do not review the construction of
directionlets in detail (see [1] for more details).

2Notice that directionlets retain orthogonality from the standard WT al-
lowing for conservation of the mean-square error (MSE) in the transform do-
main. Thus, they can be fully implemented in Lagrangian optimization-based
methods. Notice also that, although the conservation of the MSE does not
hold exactly for the biorthogonal ”9-7” filter-bank used in the experiments,
the difference of the MSE is small enough and the optimization process is
still valid.
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directions that minimize the Lagrangian cost are found for each seg-
ment and the spatial quad-tree is pruned bottom-up to the optimal
solution. Finally, the optimal quantization step size is chosen from
the listQ. The full algorithm is presented next.
Step 0: Set Slevel ← 0,

Step 1: If Slevel < maxSlevel, then:

∗ Apply quad-tree segmentation in the original domain,
∗ For each of the 4 generated segments go recursively to Step
1 with Slevel ← Slevel + 1,

Step 2: For each pair of transform directions from the list D:
∗ Apply directionlets to each segment using the isotropic con-
struction and build the zerotrees,

∗ Quantize the LP coefficients using all values qLP ∈ Q and
choose the one that minimizes the Lagrangian cost,

∗ For each qHP ∈ Q, apply the standard SFQ, compute and
record the resulting Lagrangian costs,

∗ Choose the best qHP that minimizes the Lagrangian cost,

Step 3: Choose the best pair of transform directions that minimizes
the Lagrangian cost,

Step 4: If Slevel < maxSlevel, then:

∗ If the Lagrangian cost of the current segment is smaller than
the sum of the Lagrangian costs of its children-segments,
then keep only the current segment and discard the children-
segments,

∗ Otherwise, keep its children-segments and set the Lagrangian
cost of the current segment to be the sum of the Lagrangian
costs of the children-segments,

Step 5: Encode the quantized coefficients and map information for
each segment using an adaptive arithmetic coder.

The variablemaxSlevel determines the maximal segmentation
depth and is chosen a priori. In our experiments, maxSlevel =

3. Notice that the jump in Step 1 is not a loop, but a recursive
call, where newly generated smaller segments are forwarded as ar-
guments in each call. The optimal choices of the spatial segmenta-
tion, transform directions for each segment and the quantization step
sizes are encoded as side information that is added to the output bit
stream. The cost of these side information bits is added to the total
Lagrangian cost of encoding segments and is used when the optimal
segmentation is calculated.

3.2. Deblocking
Because of the separated processing of spatial segments, the com-
pressed images may be affected by a blocking effect, which is vis-
ible as sharp artificial edges along the segment boundaries. This
effect is especially severe in the case of compression at low bit-rates.
The same issue appeared in the JPEG standard in the 90’s and, since
then, there have been many successful deblocking algorithms. We
use the algorithm proposed in [14], which is based on thresholding
oversampled wavelet coefficients. The visual quality of the recon-
structed images is importantly improved (as shown in Fig. 5), even
though the impact on the MSE is negligible.

(a) (b)
Fig. 3. The optimal segmentation and choice of transform directions in
each segment are found using Lagrangian optimization. These solutions are
obtained for compression of the images (a) Lena at the target bit-rate 0.05bpp
and (b) Barbara at 0.12bpp.

3.3. Computational Complexity
In [10], we showed that the order of computational complexity (or
the order of the number of arithmetic operations) of applying di-
rectionlets to an N × N image using L-tap 1-D filters is given by
O(LN2). Here, we show that our method increases the computa-
tional complexity of the standard SFQ only up to a constant and,
thus, retains the same order.

The increase of the order is generated by two factors: (1) the
two additional optimization phases (over spatial segmentation and
directions) and (2) the deblocking algorithm. The two optimization
phases contribute to the total complexity in the two multiplicative
constants. The optimization over spatial segmentation increases the
complexity (maxSlevel + 1) times, whereas the optimization over
directions contributes in the constant |D|. Notice that these constants
have small values in our experiments and do not depend on the im-
age size. The deblocking algorithm carries more multiplication and
addition operations because of the implemented forward and inverse
overcomplete 2-D WT. However, the computational complexity re-
mains of the orderO(N2). Thus, the total computational complexity
is equal to the complexity of the standard SFQ multiplied by a con-
stant, which does not depend on the image size.

4. RESULTS
We compare the performance of our compression method to the
performance of the standard SFQ and the state-of-the-art methods
SPIHT [12] and JPEG-2000 when applied to several standard test
images. The comparison is given in terms of both the visual and
numerical (PSNR) quality.

As explained in Section 3.1, the optimal spatial segmentation
and transform directions are found using Lagrangian optimization.
Fig. 3 shows a result of this optimization process in the case of the
images Lena and Barbara compressed at the bit-rates 0.05bpp and
0.12bpp, respectively. Notice that the chosen directions are aligned
to the locally dominant directions in the segments of the image.

The results of compression of the images Lena and Barbara us-
ing our method, the standard SFQ, SPIHT and JPEG-2000 are com-
pared in Fig. 4. Our method outperforms all these methods in the
entire bit-rate interval shown in the graphs. The gain is especially
significant at low bit-rates (up to 0.8dB). The corresponding recon-
structions of the two images are shown in Fig. 5 for the compres-
sion at the bit-rate 0.1bpp using our method and the standard SFQ.
The obtained PSNR factors are 30.92dB and 30.17dB for Lena and
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(b)
Fig. 4. The numerical comparison of the compression performance in terms
of PSNR. (a) The original images Lena and Barbara. (b) The results obtained
by our method, the standard SFQ, SPIHT and JPEG-2000. Our method out-
performs the standard SFQ as well as the other two methods.

(a)

(b)
Fig. 5. The reconstructions of the two images are obtained by the compres-
sion at 0.1bpp using (a) the standard SFQ (30.17dB for Lena and 24.58dB
for Barbara) and (b) our method (30.92dB and 25.34dB). Our new method
provides better reconstructions than the standard SFQ at the same bit-rate.
The artifacts are aligned with the locally dominant directions in the images
and are less visually annoying as compared to (a).

25.34dB and 24.58dB for Barbara, respectively. Both the numerical
and visual quality of the images obtained by our method are better
than those obtained by the standard method. Moreover, the artifacts
that appear in the low bit-rate compressed images are oriented along
locally dominant directions and are, thus, less visually annoying as
compared to the standard reconstruction.

5. CONCLUSION
We have proposed a novel adaptive image compression algorithm
that combines the SFQ method proposed in [2] and directionlets. In
our algorithm, image is segmented using the quad-tree segmentation
method and transform directions are adapted to dominant directions
in each segment. The segmentation and the choice of transform di-
rections are optimized in a R-D sense using Lagrangian optimiza-
tion. We showed that our method outperforms the standard SFQ and
also the state-of-the-art image coding methods, like SPIHT or JPEG-
2000, with no significant increase of computational complexity.
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