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ABSTRACT 
 
We propose an image coding scheme using 2-D anisotropic 
dual-tree discrete wavelet transform (DDWT). First, we 
extend 2-D DDWT to anisotropic decomposition, and 
obtain more directional subbands. Second, an iterative 
projection-based noise shaping algorithm is employed to 
further sparsify anisotropic DDWT coefficients. At last, the 
resulting coefficients are rearranged to preserve zero-tree 
relationship so that they can be efficiently coded with 
SPIHT. Experimental results show that our proposed 
scheme outperforms JPEG2000 and SPIHT at low bit rates 
despite the redundancy of DDWT.  
 
Index Terms— 2-D DDWT, anisotropic decomposition, 
redundant wavelet transform 
 

1. INTRODUCTION 
 
2-D Discrete Wavelet Transform (DWT) has received great 
success in image coding. It captures point singularities 
efficiently, but fails to capture directional structures which 
are often anisotropic at different orientations. Many tools 
have been invented to incorporate directional representation 
into the multiscale analysis framework [1][2][3].   

DDWT proposed by Kingsbury is one of promising tools 
with the following three main advantages: direction 
selectivity, limited redundancy, and shift invariance [4][5]. 
The first two features are especially appealing for image 
coding. Basis functions with direction selectivity can 
characterize directional structures efficiently. Limited 
redundancy would facilitate sparse representation without 
imposing too much overhead of coding redundant locations.  

Due to these advantages, Wang et al. first proposed a 
DDWT-based video coding scheme without motion 
compensation in which 3-D DDWT achieves better coding 
performance than 3-D DWT [6]. 3-D DDWT is later 
extended to anisotropic decomposition [7]. Unlike conven-
tional dyadic decomposition, anisotropic decomposition 
produces directional basis functions of elongated shape. It 

thus contributes to some improvements on representation. 
However, only nonlinear approximation in terms of PSNR 
vs. numbers of retrained nonzero coefficients is investigated 
and no coding result has been presented in [7]. Recently, we 
propose an image coding scheme using DDWT, and the 
coding performance is comparable to that of JPEG2000 [8]. 

In this paper, we extend our previous work to 2-D 
Anisotropic DDWT (ADDWT) for efficient representation 
of directional features in images. For each level, 10 basis 
functions, instead of 6 basis function in 2-D DDWT, are 
obtained with ADDWT. An iterative projection-based noise 
shaping method [12] is then performed to get sparser 
coefficients so that only a small portion of them need to be 
coded. A rearrangement for resulting coefficients is 
employed to preserve zero-tree relationship for subband 
coding using SPIHT. According to experimental results, our 
proposed image coding scheme shows better performance 
compared with previous work in [8], and outperforms two 
popular DWT-based image coding schemes, SPIHT and 
JPEG2000, in terms of both objective metric (PSNR) and 
visual quality at low bit-rates.  

The rest of this paper is organized as follows. 
Anisotropic decomposition of 2-D DDWT is described in 
Section 2. Section 3 introduces noise shaping for sparser 
representation. Experimental results are presented in Section 
4. Finally, this paper is concluded in Section 5. 
 

2. 2-D ANISOTROPIC DUAL-TREE DISCRETE 
WAVELET TRANSFORM (ADDWT) 

 
In this section, we first briefly introduce 2-D DDWT and 
then describe its extension to anisotropic decomposition. 
 
2.1. 2-D DDWT 
 
DDWT is a complex transform whose wavelet function is 
restrained to have single-sided spectrum. Either the real part 
or the imaginary part can be used as a stand-alone transform 
since they both guarantee perfect reconstruction. Meanwhile, 
DDWT is an overcomplete transform with redundancy of 
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2 :1m  for m-dimensional signals. Only the real part of 
DDWT is taken in coding applications to reduce the 
introduced redundancy [6][7]. For example, the redundancy 
will be reduced to 2:1 from 4:1 for 2-D case. The real part 
of DDWT is simply referred to as DDWT hereafter, unless 
otherwise stated.  

The implementation of 2-D DDWT consists of two 
steps. Firstly, an input image is decomposed up to a desired 
level by two separable 2-D DWT braches, branch a and 
branch b, whose filters are specifically designed to meet the 
Hilbert pair requirements [4]. Then six high-pass subbands 
are generated: HLa, LHa, HHa, HLb, LHb, and HHb, at each 
level. Secondly, every two corresponding subbands which 
have the same pass-bands are linearly combined by either 
averaging or differencing. As a result, subbands of 2-D 
DDWT at each level are obtained as ( ) / 2a bHL HL , 

( ) / 2a bHL HL , ( ) / 2a bLH LH , ( ) / 2a bLH LH , ( ) / 2a bHH HH ,  

( ) / 2a bHH HH .  
The frequency tiling of 2-D DDWT is illustrated in Fig. 

1a, where x and y are the cutoff frequency of 2-D input 
signal. Fig. 1b shows six wavelets at level 5 whose selective 
directions are 75 , 15  and 45  respectively. These 
directions are evenly distributed over the 2-D plane. The 
imaginary part of 2-D DDWT has similar basis functions as 
the real part. For more details on DDWT, please refer to 
[4][5]. 
 

x x

y

y  
    (a)                                                          (b) 

Fig. 1. (a) Frequency tiling of 2-D DDWT and (b) Basis 
functions of 2-D DDWT. A basis function and its ideal 
spectrum support are associated with the same number. 

 
2.2. 2-D Anisotropic DDWT 
 
The extension from dyadic decomposition to anisotropic 
decomposition of wavelet packets shows better adaptability 
to the features of images [9]. In anisotropic decomposition, 
subbands are allowed to be only decomposed vertically or 
horizontally rather than along both directions sequentially. 
In this way, anisotropic wavelet packets based on DWT 
provides basis functions with different aspect ratios which 
are thus anisotropic. However, the directions of these basis 
functions are still only horizontal, vertical, or diagonal.   
Noting that DDWT subbands are directional, incorporating 

anisotropic decomposition into DDWT (ADDWT) will 
generate anisotropic yet directional basis functions. For 
example, performing vertical decomposition on the 1st

 
subband in Fig. 1 will produce two new subbands. The 
resulting basis functions and corresponding idealized 
spectrum supports are illustrated in Fig. 2. It can be 
observed that the resulting basis functions are indeed 
anisotropic and directional. 

 
Fig. 2. Illustration of anisotropic decomposition on the 1st 
pass-band of 2-D DDWT. 

Different decomposition strategies would generate 
different basis functions. Naturally, one would like to select 
basis functions that best adapt to the regarding image as in 
DWT-based anisotropic wavelet packets [9]. However, for 
compression applications, ADDWT coefficients need to be 
sparsified with noise shaping which will be introduced in 
Section 3. The computation complexity will increase 
dramatically if these two stages are jointly optimized. So we 
use a fixed decomposition pattern to ensure the anisotropy 
of resulting basis functions so that directional features in 
images are efficiently captured. The rules for anisotropic 
decomposition are given as follows. 

 Decompose 1st and 6th subbands vertically  
 Decompose 3rd and 4th subbands horizontally 
 Leave 2nd and 5th subbands without decomposition 

 
 

x

y

x

y

              (a)                                                         (b) 

Fig. 3. (a) Frequency tilling of 2-D ADDWT and (b) Basis 
functions of 2-D ADDWT. A basis function and its ideal 
support are associated with the same number. 
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As a result, ADDWT produces 10 subbands whose 
frequency tiling are shown in Fig. 3a. The corresponding 
basis functions are illustrated in Fig. 3b. They orient at the 
directions of 81 , 63 , 45 , 27 , and 9  
respectively. The 3rd and 8th basis functions are not shown in 
Fig. 1b since they are the same as the 2nd and 5th basis 
functions respectively. The reason for the third rule is that 
further decomposition on 2nd and 5th subbands does not give 
anisotropic basis functions. The advantages of ADDWT are 
twofold. On the one hand, locally high frequency 
components of images are characterized much more 
precisely by finer division of high-pass subbands. On the 
other, edges and contours in images are more efficiently 
represented by anisotropic basis functions oriented in finer 
directions. 
 
3. SPARSIFY ADDWT COEFFICIENTS WITH NOISE 

SHAPING 
 
To get a sparse representation for a given signal and a set of 
redundant dictionaries equals to solve an undetermined 
linear equation under sparseness constraints. Basis pursuit 
minimizes the 1l norm of obtained coefficients via linear 
programming, and is thus computationally demanding [10]. 
Matching pursuit, a greedy algorithm, selects the atom 
which best matches the regarding signal at each iteration 
[11]. Although computational complexity can be reduced, 
matching pursuit is often trapped into suboptimum due to its 
greedy nature. With fast analysis and synthesis transform, 
noise shaping achieves desirable trade-off between 
sparseness and computation complexity. 

Let 1MNx be the vector form of an M N  input 
image (via vectorization). 2MN MNA  represents the 
analysis matrix of ADDWT. 1| , MNy y Ax x  

denotes the range space of A while its orthogonal 
complementary space is 2 1| 0,  ,T MNy y z y z . 

Note that is also the null space of synthesis 
matrix 2MN MNR , where 1[ ]T TR A A A . So a solution 
y lies in  plus any component y in will give the same 
reconstruction as y itself, i.e. ( )R y y Ry . Naturally 
one would like to seek a proper y in which makes 
y y y  as sparse as possible while perfect 
reconstruction is naturally guaranteed. Noise shaping 
introduces components of  into y with an iterative 
algorithm. More specifically, at each step, coefficients are 
quantized via thresholding. The reconstructed error in image 
domain will be projected onto , and then added back to the 
quantized coefficients. In this way, quantization error lies in 

will be retained to strengthen large coefficients while 
weaken small coefficients. The effectiveness of NS has been 

verified in video coding [6][7]. For more details about noise 
shaping, please refer to [12]. 
 

4. EXPERIMENTS AND RESULTS 
 
We evaluate the coding performance of our proposed 
method in this section. Three 512 512 grayscale images, 
Barbara, Baboon, and Lena are tested. Two state-of-the-art 
DWT-based coding methods, SPIHT with arithmetic coding 
and JPEG2000, are compared with ADDWT-based image 
coding scheme. To verify the contribution of anisotropic 
decomposition, results of DDWT-based image coding are 
also given. We code DDWT coefficients and ADDWT 
coefficients with SPIHT followed by arithmetic coding. Test 
images are decomposed up to 6 levels in each coder. The 
CDF 9/7 biorthogonal filters are employed for DWT and 
anisotropic decomposition stage of ADDWT. For DDWT, 
CDF 9/7 biorthogonal filters are used at the first level 
decomposition, and Qshift filters in [4] are used for the rest. 
For noise shaping, the initial threshold is set to 128, and 
then is decreased to zero by the step size of 1 for the 
remaining iteration. 

To code DDWT coefficients with SPIHT, we 
concatenate two corresponding subbands of two DDWT 
trees horizontally. The structure of obtained coefficients 
looks as if it is generated by decomposing a 512 1024 
image with 2-D DWT.  For ADDWT, rearrangement is 
needed before this concatenation since zero-tree relationship 
is destroyed by anisotropic decomposition. We adopt the 
same way in [13], ensuring that zero-tree structure is 
preserved to facilitate efficient subband coding with SPIHT. 
For every two resulting subbands of anisotropic 
decomposition, every co-located 2 2 block in these two 
subbands are concatenated along the decomposition 
direction. Through this procedure, we virtually get the 
dyadic decomposition structure for which SPIHT is 
designed.  

Coding performances for three test images are 
presented in Table I, Table II, and Table III respectively. 
ADDWT outperforms other three schemes at low bit-rates 
for most cases. Improvement is significant especially for 
images with rich directional features such as Barbara. 
Compared with 2-D DDWT, anisotropic decomposition 
gains about 0.3 dB on average. The reason is that, with 
anisotropic directional basis functions, 2-D ADDWT can 
represent directional structures with fewer coefficients. Fig. 
4 shows enlarged reconstructed patches of Barbara and 
Baboon of JPEG2000 and the proposed scheme to compare 
subjective visual quality. It can be observed that ADDWT 
preserves the directional features in these two images much 
better.  Obviously, ADDWT-based method produces much 
more visually appealing reconstructed images than 
conventional DWT does. 
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Table I Performance comparison for Barbara. 

Bit-rate (bpp) SPIHT JPEG2000 DDWT ADDWT 
0.1 24.26 24.64 24.53 24.81 
0.2 26.66 27.27 27.12 27.77 
0.3 28.56 29.18 28.89 29.59 
0.4 30.10 30.82 30.85 31.33 
0.5 31.40 32.26 32.08 32.54 

 

Table II Performance comparison for Lena. 

Bit-rate (bpp) SPIHT JPEG2000 DDWT ADDWT 
0.1 30.22 29.86 30.31 30.55 
0.2 33.11 32.93 33.31 33.45 
0.3 34.87 34.79 34.94 34.99 
0.4 36.15 35.98 36.24 36.30 
0.5 37.08 37.12 37.12 37.00 

 

Table III Performance comparison for Baboon. 

Bit-rate (bpp) SPIHT JPEG2000 DDWT ADDWT
0.1 21.34 21.35 21.28 21.47 
0.2 22.69 22.63 22.51 22.71 
0.3 23.76 23.65 23.78 23.91 
0.4 24.66 24.62 24.60 24.74 
0.5 25.64 25.55 25.39 25.49 

 
 

 
Fig. 4. Enlarged patches of Barbara (top row) and Baboon 

(bottom row) at 0.2 bpp. Left: original images. Middle: 
results of JPEG2000. Right: results of ADDWT. 

 
5. CONCLUSIONS 

 
In this paper, we propose an image coding scheme using 2-
D anisotropic dual-tree discrete wavelet transform. To 
enhance the capability of capturing directional features at 
different scales, anisotropic decomposition is performed on 
DDWT to get anisotropic basis functions with more 
directions. Noise shaping is then employed to further 

sparsify ADDWT coefficients. With SPIHT the subband 
method, it is demonstrated that the proposed coding scheme 
outperforms two popular DWT-based schemes, JPEG2000 
and SPIHT, at low bit-rates in terms of both PSNR and 
subjective visual quality.  
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