
PEAK TRANSFORM - A NONLINEAR TRANSFORM FOR EFFICIENT

IMAGE REPRESENTATION AND CODING

Zhihai He

Department of Electrical and Computer Engineering
University of Missouri, Columbia, MO, 65203, USA

HeZhi@missouri.edu

ABSTRACT

In this work, we introduce a nonlinear geometric transform,
called peak transform, for efficient image representation and
coding. Coupled with wavelet transform and subband de-
composition, the peak transform is able to significantly re-
duce signal energy in high-frequency subbands and achieve
a significant transform coding gain. This has important
applications in efficient data representation and compres-
sion. Based on peak transform (PT), we design an image
encoder, called PT encoder, for efficient image compres-
sion. Our extensive experimental results demonstrate that,
in wavelet-based subband decomposition, the signal energy
in high-frequency subbands can be reduced by up to 60%
if a peak transform is applied. The PT image encoder out-
performs state-of-the-art JPEG2000 and H.264 (INTRA)
encoders by up to 2-3 dB in PSNR (peak signal-to-noise
ratio), especially for images with a significant amount of
high-frequency components.

Keywords - Image compression, nonlinear transform,
energy compaction, wavelet subband decomposition.

1. INTRODUCTION

The key in efficient image compression is to explore source
correlation so as to find a compact representation of image
data. Over the past decades, various spatial transforms,
such as KLT, DCT (discrete cosine transform) and DWT
(discrete wavelet transform) [1], have been developed to ex-
plore source correlation. These transforms mentioned here
are linear which can be represented by matrices. These
linear transforms, including KLT, DCT, and DWT, are de-
signed to remove statistical source correlation such that the
output components are statistically independent of each
other. We refer to this type of statistical correlation ex-
plored by linear transforms as linear correlation. As we
know, images (and videos) are a special type of data. They
are not just 2-D arrays of pixels in a statistical sense. For
example, if we randomly generate a 2-D array of data ac-
cording to a given statistical distribution, the probability
for this 2-D array of data to be a natural image is extremely
low. This is because, besides statistical characteristics, nat-
ural images contains a lot of non-statistical perceptual im-
age features, such as edges, contours, patterns, structures,
and objects. In other words, in images and videos, be-
sides linear correlation, there is a significant amount of non-

linear source correlation presented by these perceptual im-

age features. This type of nonlinear correlation has been
left largely unexplored by linear transforms, such as KLT,
DCT, and DWT.

During the past decades, researchers have been design-
ing efficient prediction scheme to explore the nonlinear source
correlation which has been left largely unexplored by linear
spatial transforms. For example, the cross-subband parent-
children dependency has been observed and explored by
EZW (embedded zero-tree wavelet), SPIHT, JPEG2000 [1],
and many other wavelet-based image coding algorithms.
Recently, several modified wavelet transforms which take
edge flow or texture orientation into account have been de-
veloped. These transforms include curvelet and ridgelet
transforms [4]. Another important type of techniques, called
directional or orientation-adaptive wavelets which combine
directional prediction and wavelet transform, have been de-
veloped in the literature [2, 3].

In this work, we propose to explore a new approach: de-
veloping a nonlinear geometric transform, called peak trans-

form, to assist the wavelet transform in exploring nonlin-
ear data correlation. Conceptually speaking, the proposed
peak transform is able to convert a hard-to-compress signal
into an easier-to-compress signal by exploring the nonlinear
geometric source correlation within the input signal. We
will study various design issues of the PT image encoder.
Our experimental results demonstrate that the peak trans-
form is able to significantly improve the transform coding
again. The new PT encoder outperforms state-of-the-art
image encoders, including JPEG2000 [1] and H.264 by up
to 2-3 dB, especially for images with a significant amount
of high-frequency components.

The rest of the paper is organized as follows. In Sec-
tion 2, we will present the mathematical definition of peak
transform and discuss its major properties from a data com-
pression perspective. The PT image encoder design will be
discussed in Section 3. The experimental results are pre-
sented in Section 4. Section 5 will discuss future research
directions and conclude the paper.

2. DEFINITION AND PROPERTIES OF PEAK

TRANSFORM

Definition: Curve Segment. A curve segment is a func-
tion f(x) defined over a finite interval [a, b].

Definition: Cascade of Curve Segments. Given
two curve segments f1(x) and f2(x) defined over finite in-

III - 1771-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



tervals [a1, b1] and [a2, b2] with b1 ≥ a2, the cascade of these
two curve segments yields a new curve segment f(x) defined
over [a1, b1 + b2 − a2]:

f(x) =

{
f1(x), x ∈ [a1, b1]
f2(x)− f2(a2) + f1(b1), x ∈ (b1, b1 + b2 − a2].

(1)
We denote this cascading operation by

f(x) = f1(x) � f2(x). (2)

Physically, the new curve segment f(x) is obtained by join-
ing two curve segments f1(x) and f2(x) with proper shifting
operations as illustrated in Fig. 1.

Figure 1: Cascade of two curve segments.

Now we are ready to define the peak transform.
Definition: N-Point Forward Peak Transform. A

function f(x) is defined over a finite interval [a, b]. This
interval is partitioned into N +1 sub-intervals by N points,
a < x1 < x2 < · · · < xN < b. For convenience, we write
x0 = a and xN+1 = b. We refer to {xn} as peaks (or
breaking points). The curve segment defined over interval
[xi−1, xi] is denoted by fi(x), 1 ≤ i ≤ N + 1. The N -point
peak transform of f(x), denoted by P({xi})[f(x)] is defined
as

P({xi})[f(x)] = go(x) � ge(x), (3)

where

go(x) = f1(x) � f3(x) � · · · � f2·�N/2�+1(x), (4)

and
ge(x) = f2(x) � f4(x) � · · · � f2·�N/2�(x) (5)

are the cascades of all odd and even-numbered curve seg-
ments, respectively. Physically speaking, in peak trans-
form, we first cascade all odd-numbered curve segments
then all even-numbered curve segments and form a new
curve. Fig. 2 shows an example of 5-point peak trans-
form. It can be seen that the peak transform only changes
the order of curve segments and is reversible. The back-
ward transform can be done by simply cascading the curve
segments according to their original order. We denote the
backward peak transform operation by P−1({xn})[·].

2.1. Properties of Peak Transform

One important property of peak transform is that it is
capable of converting a high-frequency signal into a low-
frequency one if the peaks are properly selected. In the

Figure 2: An example of 5-point peak transform.

following example, we demonstrate this unique property of
peak transform on image signals. We take the 330-th row
of image Barbara as the input signal f(x), which is shown
in Fig. 3(A). The peaks used in peak transform are shown
in diamonds. In this example, we first apply the forward
peak transform to f(x) and obtain P[f(x)]. Fig. 3(B) shows
the peak transform output. As in the toy example, we pass
P[f(x)] to a Debauches (9, 7) filter bank and obtain the
low and high-frequency components (subbands) of P[f(x)].
We then apply backward peak transform to these two sub-
bands. Figs. 4(A) and (B) show the low and high-frequency
subbands without and with peak transform. Again, we can
see that the output signal of peak transform has a much
smaller amount of high-frequency components while their
low-frequency subbands are very similar. According to our
experiment, the energy of the high-frequency subband with
peak transform is about 43% of that without peak trans-
form.
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Figure 3: Peak transform of the 330-th row of image Bar-
bara: (A) the original piece-wise linear function and the
selected peaks shown in diamonds; (B) the peak transform
output.

3. PEAK TRANSFORM BASED DATA

COMPRESSION SYSTEM DESIGN

In this section, we will discuss how to design an data com-
pression system based on peak transform. In peak trans-
form based data compression, the peak transform is jointly
used with wavelet transform and subband decomposition to
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Figure 4: (A) the low and high-frequency subbands of the
original signal; (B) the low and high-frequency subbands of
the PT output.

minimize the signal energy in high-frequency subbands.

Let us start with 1-D input signals, which can be a row
or a column of image pixels. Let f(x) be an input signal
of length M where 1 ≤ x ≤ M . As illustrated in Fig. 5,
an N -point forward peak transform with peaks {xn} is ap-
plied to the input signal f(x) . The peak transform output,
denoted by P({xn})[f(x)], is then passed to a two-branch
filter bank with a low-pass filter H0(z) and a high-pass
filter H1(z). An N -point backward peak transform with
peaks {yn}, denoted by P−1({yn})[·], is applied to both
low and high-frequency subbands. It should be noted that
the sizes of low and high-frequency subbands due to down-
sampling are both M

2
. Therefore, the original peaks cannot

be used any more. One possible approach is to force the lo-
cation of each original peak xn to be an even integer. Dur-
ing the backward peak transform of two subbands, we use
{yn = xn

2
} as peaks. Certainly, we can choose other peaks.

However, using yn = xn

2
, the backward peak transform can

bring the wavelet transform coefficients back to their initial
pixel order as in the original signal. The above procedure,
which decomposes the input signal into two subbands us-
ing peak transform (PT) and wavelet transform (WT), is
called PTWT subband decomposition. The PTWT subband
decomposition procedure can be repeated for the low and
high-frequency subbands to further decompose the signal
into more frequency subbands.

Figure 5: PTWT subband decomposition and synthesis.

The frequency subbands will be quantized, entropy en-

coded, and transmitted to the decoder, as illustrated in
Fig. 5. The peaks {yn} will be also compressed with lossless
coding and sent as overhead information to the decoder. At
the decoder side, the peaks {yn} will be decoded. A forward
peak transform P({yn})[·] with peaks {yn} will be applied
to low and high-frequency subbands. After subband syn-
thesis, the backward peak transform P−1({xn})[·] will be

performed to obtain the reconstructed signal f̂(x). Here,
xn = 2yn. We can see that the PTWT subband decompo-
sition and synthesis illustrated in Fig. 5 guarantees perfect
reconstruction and the only loss is caused by quantization,
as in conventional wavelet-based data compression.

The 1-D PTWT subband decomposition can be extended
to 2-D images. Fig. 6(B) shows a 3-level PTWT subband
decomposition of image Barbara. The corresponding peak
map is shown in Fig. 6(C). For comparison, we also shown
the 3-level subband decomposition using DWT only in Fig. 6(A).
It can be seen that the transform coefficients in (B) have
much smaller magnitudes than those in (A). The subband
data will be compressed using the SPIHT-like encoder de-
veloped in our previous work [6]. The corresponding peak
map is shown in Fig. 6(C). The peak map will be encoded
using context adapative arithmetic coding. 1

Figure 6: (A) 3-level subband decomposition of Bar-

barawith wavelet transform; (B) 3-level PTWT subband
decomposition; (C) the peak map.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the data compression efficiency
of the proposed PT image encoder and compare its perfor-
mance with state-of-the-art image encoders, include JPEG-
2000 and H.264 INTRA coding. The JPEG-2000 image en-
coder we used in this performance evaluation is the Jasper
encoder. In H.264 encoding, we use JM 9.0 H.264 video
encoder (INTRA frames only) with CABAC (context adap-
tive arithmetic coding). The test images (grayscale) of size
512×512 are shown in Fig. 7. To deal with grayscale images
in H.264, we set the chrominance components (Cb and Cr)
of each frame to be a constant 128. Figs. 8 shows the PSNR
(peak signal-to-noise ratio) performance of the PT encoder
in comparison with JPEG-2000 and H.264 image coding
over all test images. It can be seen that the PT encoder
consistently outperforms the other two image encoders on
all test images. Fig. 10 shows the fraction of bits used for
encoding peak map as a function of coding bit rate for each
test image. We can see that, as the overall coding bit rate

1Due to page limitation, in this paper, we are not able de-
scribe in detail how to obtain the optimum set of peaks for peak
transform. Please refer to our technical report for more detail.

III - 179



increases, the fraction of peak map bits decreases. (How-
ever, it should be noted that, the number of peak map bits
does increase.) Fig. 9 shows the images of Barbara encoded
at 0.4 bpp by JPEG2000, H.264INTRA, and the proposed
PT encoder. It can be seen that, with PT encoding, the
image has a much better visual quality with enhanced edge
information. This is because the PT encoder is able to ef-
ficiently preserve high-frequency image features using peak
transform and peak map.

Figure 7: Test images: (a) Lena; (b) Barbara; (c) NBA2;
(d) Football2.
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Figure 8: Compression performance comparison with
JPEG2000 and H.264 (INTRA) on images: (a) Lena; (b)
Barbara; (c) NBA2; (d) Football2.

5. CONCLUDING REMARKS, DISCUSSION,

AND FURTHER RESEARCH DIRECTIONS

The major contribution of this work is that we have intro-
duced a nonlinear geometric transform, called peak trans-
form, which is able to convert high-frequency signals into
low-frequency ones. Coupled with wavelet transform and
subband decomposition, the peak transform is able to sig-
nificantly reduce the signal energy in high-frequency sub-
bands. This has significant applications in data compres-
sion of 1-D signals (e.g. speech and acoustic signals) and 2-
D images. We have developed an fast and efficient dynamic

Figure 9: Subjective picture quality comparison on image
Barbara coded at 0.4bpp: (a) JPEG2000; (b) H.264 IN-
TRA; (c) PT encoding.
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Figure 10: Fraction of peak map bits v.s. coding bit rate
for each test image.

solution to find optimum (or sub-optimum) peak transform
to minimize the high-frequency subband energy or maxi-
mize the transform coding gain. We have also studied how
to design an image compression system based on peak trans-
form. Our experimental results show that the proposed PT
encoder outperforms the state-of-the-art image encoders,
including JPEG2000 and H.264 (INTRA).
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