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ABSTRACT

The knowledge of camera intrinsic and extrinsic parameters is use-
ful, as it allows us to make world measurements. Unfortunately,
calibration information is rarely available in video surveillance sys-
tems and is difficult to obtain once the system is installed. Auto-
calibrating cameras using moving objects (humans) has recently at-
tracted a lot of interest. Two methods were proposed by Lv-Nevatia
(2002) and Krahnstoever-Mendonça (2005). The inherent difficulty
of the problem lies in the noise that is generally present in the data.
We propose a robust and a general linear solution to the problem
by adopting a formulation different from the existing methods. The
uniqueness of our formulation lies in recognizing two fundamental
matrices present in the geometry obtained by observing pedestrians,
and then using their properties to impose linear constraints on the
unknown camera parameters. Experiments with synthetic as well as
real data are presented - indicating the practicality of the proposed
system.

Index Terms— Video Surveillance, Camera Calibration, Fun-
damental Matrix.

1. INTRODUCTION

Observation of human activities from stationary cameras is of sig-
nificant interest to many applications. This is mainly due to the fact
that the computer vision research has advanced to systems that can
accurately detect, recognize and track objects as they move through a
scene. Most of the video surveillance inovles, for instance, monitor-
ing an area of interest (e.g. a building entrance, or an embassy) using
stationary cameras where the intent is to monitor as large an area as
possible. The goal for such a system can be to model the behavior of
objects (e.g. cars or pedestrians, depending on the situation). Typi-
cally, one can employ path modeling techniques or activity learning
techniques for single or multiple cameras (e.g. [1]) and even estab-
lish relations between the camera system [2]. It is known that due
to perspective projection the measurements made from the images
do not represent metric data. Thus the obtained object trajectories
and consequently the associated probabilities represent projectively
distorted data, unless we have a calibrated camera. This is evident
from a simple observation: the objects grow larger and move faster
as they approach the camera center, or two objects moving in paral-
lel direction seem to converge at a point in the image. The projective
camera thus makes it difficult to characterize objects - in terms of
their sizes, motion characteristics, length ratios and so on - unless
more information is available about the camera being used. This is
where the camera calibration steps in.

This paper proposes a robust auto-calibration method to estimate
camera intrinsics and extrinsics by observing pedestrians in a scene.
Many camera calibration techniques exits for different scenarios [3]
but we limit ourselves with related work on camera auto-calibration

from observing pedestrians. Lv et al. [4] were the first to propose
calibration by recovering the horizon line and the vanishing points
from observed walking humans. However, their formulation does
not handle robustness issues. Recently Krahnstoever and Mendonça
[5] proposed a Bayesian approach for auto-calibration by observing
pedestrians. Foot-to-head homology is decomposed to extract the
vanishing point and the horizon line for calibration. They also in-
corporate measurement uncertainties and outlier models. However,
their method requires prior knowledge about some unknown calibra-
tion parameters and prior knowledge about the location of people;
and their algorithm is also non-linear.

We propose a robust linear solution to estimate camera intrinsic
and extrinsic parameters by observing pedestrians. See Fig. 1 for an
example of the scenario. The detected head and feet locations of a
person, over at least two instances, are used to estimate two funda-
mental matrices: horizontal- where the epipole lies on the horizon
line, and vertical - the epipole is the vertical vanishing point. Linear
constraints on the unknown camera parameters are obtained by using
properties of these matrices. The noise in data points is minimized
by using Total Least Squares method to solve an over-determined
system of equations, where the outliers are removed by truncating
the Rayleigh quotient [6].

A brief introduction to the concepts related to a pinhole camera
are presented in Section 2. The unique geometry of the problem
is explained in Section 3. The procedure to robustly determine the
camera parameters is defined in Section 4. We present experimental
results in Section 5 before concluding (Section 6).

2. BACKGROUND

The projection of a 3D scene point X ∼ ˆ
X Y Z 1

˜T
onto

a point in the image plane x ∼ ˆ
x y 1

˜T
, for a perspective

camera can be modeled by the central projection equation:

x ∼ K
ˆ

R | − RC
˜
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where ∼ indicates equality up to a non-zero scale factor and C =ˆ
Cx Cy Cz

˜T
represents camera center. Here R = RxRyRz

=
ˆ

r1 r2 r3

˜
is the rotation matrix and −RC is the relative

translation between the world origin and the camera center. The
upper triangular 3 × 3 matrix K encodes the five intrinsic camera
parameters: focal length f , aspect ratio λ, skew γ, and the principal
point at (uo, vo). As argued by [7, 8], it is safe to assume λ = 1 and
γ = 0; moreover (uo = 0, vo = 0) is assumed to lie in the center of
the image.

The aim of camera calibration is to determine the calibration
matrix K. Instead of directly determining K, it is a common practice
to compute the symmetric matrix ω = K−TK−1 referred to as
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Fig. 1. Observing pedestrians: Instead of looking at the movement
of a pedestrian, one can equivalently assume the world to be station-
ary and the camera to be translating. The two locations of the camera
are denoted by Ct and Ct+1 at time instance t and t + 1, respec-
tively. The epipole for such a translating camera lies at infinity. See
text for more details.

Image of the Absolute Conic (IAC) [3]. IAC is then decomposed
uniquely using the Cholesky Decomposition [9] to obtain K.

Image of a family of parallel lines pass through a common point
in the image. This point is referred to as the vanishing point. Knowl-
edge of vanishing points of mutually orthogonal directions is used to
put constraints on ω, which in our case is ω = diag(w11, w11, 1).

Once the camera matrix K is determined, the camera extriniscs
are extracted as:

r1 = ± K−1vx

‖K−1vx‖ , r3 = ± K−1vz

‖K−1vz‖ , r2 =
r3 × r1

‖r3 × r1‖ , (2)

where r1, r2 and r3 represent three columns of the rotation ma-
trix. Due to special geometry of the problem, two of the three un-
known angles are determined. The remaining angel is determined
only up to a fixed rotation ambiguity. The sign ambiguity can be
resolved by the cheirality constraint [3] or by known world informa-
tion, for instance the maximum rotation possible for the camera.

3. FUNDAMENTAL MATRICES INDUCED FROM
PEDESTRIANS

Our auto-calibration method is based on exploiting the fundamental
matrices induced from pedestrians in a scene. The fundamental ma-
trix satisfies the condition that for any pair of corresponding points
x ←→ x′ (in two images):

x′TFx = 0 (3)
where the point x′T is mapped to a line l = Fx in the other image
such that x′Tl = 0 [3].

F is a rank 2 homogenous matrix with 7 d.o.f. In order to com-
pute F, in general at least 7 point correspondences are required. An
important concept is the epipole - the image in one view of the cam-
era center of the other view (cf. Fig 2a). It is also the vanishing point
of the baseline (i.e. the line joining the two camera centers) direc-
tion. The epipole e is given as the right null-vector of F: Fe = 0.
Similarly, e′ is the left null-vector of F.

While observing pedestrians, one can notice the varied geometry
associated with such a setup. As an object or a pedestrian of height h
traverses the ground plane, each location on this plane corresponds to
exactly one location on the head plane. As shown in Fig. 1, the head

of the pedestrian is labeled as Ti, while the feet as Bi, where i =
1, 2, . . . , n; n being the number of frames in which the pedestrian is
visible. Without loss of generality, for a simple case of two frames,
this head-to-feet correspondence can be mapped by a fundamental
matrix.

Typically, the concept of fundamental matrix arises between mul-
tiple views taken from a camera, or equivalently from multiple cam-
eras with overlapping field of view. In this paper, we focus on a
special kind of a fundamental matrix that is induced by the pedes-
trian movements in a scene. The key idea is: instead of considering
translation of the pedestrians (any two instances can be considered
as being translating), one may equivalently consider the situation in
which the camera undergoes translation, and the world is station-
ary. This is as depicted in Fig. 1. Thus the camera is considered
non-stationary. This re-formulation of the problem allows us to in-
troduce the concept of fundamental matrix, as described above, into
our problem. Each instance of a pedestrian (head and feet location)
can be treated as one single image. Thus any two instance of pedes-
trian induces a fundamental matrix between them.

When the motion of the camera is pure translational, the funda-
mental matrix has the form:

Fh = [e′]×KRK−1 = [e′]× (4)

where R = I, [e′]× is the skew-symmetric matrix representation of
the epipole and Fh is defined as TT

i FhTj = 0, where i �= j. Note
that Fh now has only 2 d.o.f., instead of 7 [3], which correspond
to the position of the epipole. Therefore, only two point correspon-
dences, Ti ←→ Tj ,Bi ←→ Bj where i �= j, should be sufficient
to compute Fh. The two epipoles e and e′ are also collinear.

Fh can be considered as mapping points in a direction parallel
to the ground plane or horizontally. We can also introduce another
fundamental matrix for the vertical direction such that TT

i FvBi =
0. Thus now we are looking at the correspondences Ti ←→ Bi.
This is shown in Fig. 2b. The special epipolar geometry arising
for a pure translating camera is depicted in Fig. 2a. As this figure
shows, the intersection of the baseline with the image plane is at
infinity. That is, the epipole lies at infinity or the epipole becomes a
vanishing point.

Fig. 2b depicts the unique geometry induced by pedestrians. For
any two instances of a pedestrian, the 2 d.o.f. Fh can be estimated
by solving the following two linear equations:

TT
1 FhT2 = 0 (5)

BT
1 FhB2 = 0 (6)

Similarly, Fv can be estimated by solving:

TT
1 FvB1 = 0 (7)

TT
2 FvB2 = 0 (8)

Once the fundamental matrix is determined, the epipole is com-
puted as the null-vector of the fundamental matrix, as described
above.

As Fig. 2a shows, the epipole eh for Fh lies on the plane at
infinity i.e. it is a vanishing point. Similarly ev is also a vanishing
point. These two vanishing points represent mutually orthogonal
(horizontal and vertical) directions in world. Therefore, these points
are used to enforce orthogonality constraint [3] on the IAC ω:

eT
v ωeh = 0 (9)

Eq. (9) is a linear equation with an unknown parameter w11 of
ω. Once w11 is determined, Cholesky decomposition is applied to
ω to obtain the camera calibration matrix K.

Determining head/foot locations: The proposed method re-
quires point correspondences, which are head/feet positions of the
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Fig. 2. (a) Epipolar geometry for pure translating camera (courtesy of [3]). The epipoles lie at infinity. (b) The two fundamental matrices, Fv

and Fh, induced by pedestrians.

pedestrians. Moving foreground objects (or regions of interest), with
shadows removed, can be extracted and tracked fairly accurately
with statistical background models (for e.g. [10, 1]). Lv et al.[4]
perform eigendecomposition of the detected blob to extract head/feet
locations. A simpler approach can be adopted: the head and feet lo-
cations can easily be estimated by calculating the center of mass and
the second order moment of the lower and the upper portion of the
bounding box of the foreground region [5].

4. ROBUST AUTO-CALIBRATION

The main issue with camera auto-calibration by observing pedestri-
ans is that head/feet detection is noisy. For example, a pedestrian
may walk casually so that the posture might not be straight. Vio-
lations such as these result in measurements that can be viewed as
outliers. Thus, some scheme needs to be adopted to minimize the in-
fluence of these outliers and noise on true data points so that accurate
results may be obtained.

Eq. (9) provides only one constraint on ω. Unless we have
more information, we can only solve for one unknown in ω =
diag(ω11, ω11, 1). Fortunately, this equation is linear and therefore
can be simplified to the form: aiw11 + bi = 0, where the subscript
i indicates the frame number. Thus from each image pair we ob-
tain one equation with one unknown. Equations obtained from a
sequence are used to construct an over-determined system of equa-
tions: 2

64
a1 b1

...
...

an bn

3
75

| {z }
Q

»
w11

1

–
= 0 (10)

The main goals of robust statistics is to recover the best structure
that fits the majority of the model while rejecting the outliers. Thus,
we need to recover the best w11 such that K is closest to the actual
calibration matrix. The popular standard least squares (LS) estima-
tion is extremely sensitive to outliers i.e. it has a breakdown point
of zero. Therefore, Total Least Squares (TLS) method is adopted
to solve the system of Eqs (10). Given an over-determined system
of equations, TLS problem is to find the smallest perturbation to
the data and the observation matrix to make the system of equations
compatible. A suitable function also needs to be selected that is less
forgiving to outliers, one such example is the truncated quadratic
[11], commonly used in computer vision. The errors are weighted up
to a fixed threshold, but beyond that, errors receive constant penalty.
Thus the influence of outliers goes to zero beyond the threshold.

We use the truncated Rayleigh quotient to remove outlier influ-
ence. The quotients are estimated as:

ρ(w11) =
nX xTAx

xTx
< ξ (11)

where x =

»
w11

1

–
, A =

ˆ
aj

i bj
i

˜T ˆ
aj

i bj
i

˜
and ξ is the

threshold. The Rayleigh quotients are estimated from the observa-
tion points and the residual errors are estimated. The threshold ξ is
set to the median of all the residual errors. Observation points ob-
tained from Eq. 10 having residual errors greater than ξ are removed
as outliers. After outlier removal, the outlier-free remaining obser-
vation points Q are used to construct the over-determined system
of Eqs. (10). The system is then solved using the Singular Value
Decomposition (SVD). The correct solution is the eigenvector cor-
responding to the smallest eigenvalue.

In summary, in order to minimize the influence of noise on our
observation matrix Q, we apply the Rayleigh quotient to filter out
the noisy data points. Once the outliers are removed, the Total Least
Squares method is applied to the remaining observation points to
estimate the unknown parameter w11 of the IAC.

5. EXPERIMENTS AND RESULTS

In order to estimate the accuracy of the proposed method, we exper-
imented with synthetic and the real data.

Synthetic data: We rigourously tested the proposed method for
estimating the camera parameter i.e. f . Eleven vertical lines of same
height but random locations were generated to represent pedestrians
in our synthetic data. The ends of the lines indicate the head or the
foot locations. We gradually add a Gaussian noise with μ = 0 and
σ ≤ 2 pixels to the data-points making up the vertical lines. Taking
two vertical lines at a time, the four points i.e. two head and two foot
location are used to obtain Fh and Fv. Vanishing points ev and eh

are substituted in to Eq. (9) to construct the over-determined system
of equations. While varying the noise from 0.1 to 2 pixel level, we
perform 1000 independent trials for each noise level, the results are
shown in Figure 3. The relative error in f increases almost linearly
with respect to the noise level. For a maximum noise of 2 pixels, we
found that the error was under 5%. The absolute error in the rotation
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Fig. 3. Performance of auto-calibration method VS. Noise level in
pixels: (a) error in focal length. (b) error in the estimated angles.
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Fig. 4. The figure depicts instances of the data set used for testing the
proposed method. The estimated head and foot locations are marked
with a circle. Different frames are super-imposed on the background
image to better visualize the test data.

Seq #1 Recovered Focal Length (f )

Fig. 4a f = 955.31
Fig. 4b f = 938.87
Fig. 4c f = 952.05
Seq #2 Recovered Focal Length (f )

Fig. 4d f = 1019.74
Fig. 4e f = 976.09
Fig. 4f f = 980.24

Table 1. The recovered focal lengths for (starting from top) Seq #1
and Seq #2. See text for more details.

angles increases linearly and is well under 0.5 degrees.
Real Data: The proposed system has been tested on multiple

sequences. The image sequences have a resolution of 320 × 240
pixels and captured at multiple locations. Different pedestrians from
a single sequences are used to estimate the camera parameters. Then,
as reported by [12], the mean of the estimated focal length is taken
as the ground truth and the standard deviation as a measure of un-
certainty in the results. This comparison of the results should be a
good test of the stability and consistency of the proposed method.
Due to space limitations, we only show results for the obtained focal
lengths.

Two video sequences are used for testing. Seq #1 contains less
than 5 minutes of data. As shown in Fig. 4a-c, different pedestrians
are chosen for auto-calibration. The results for this sequence are
given in Table 1. The estimated focal length is f = 948.74 with
a low standard deviation of σ = 8.7. Seq #2 is another sequence
used for testing, and three instances are shown in Figure 4d-f. The
estimated focal lengths are very close to each other: f = 992.02
with standard deviation of σ = 24.09, as shown in the table. The
error in the results can be attributed to many factors. One of the
main reason is that only a few frames are used per sequence. If a
large data sequence is used, the system of equations (i.e. Eq. (10))
becomes more stable and thus better results may be obtained. The
standard deviation in f for all our experiments is found to be less
than the results reported by [5].

6. CONCLUSION

This paper presents a robust and a more general solution to camera
calibration by observing pedestrians. Compared to existing methods,

the solution does not assume any special kind of pedestrian motion.
We recognize the special geometry of the problem and present for-
mulation different from existing method. Two fundamental matrices
are extracted from a pair of images containing instances of a pedes-
trian. Using unique properties of these matrices, linear constraints
are derived to obtain the unknown camera parameters. The detected
head/feet locations are used to robustly estimate the unknown cam-
era parameters. We successfully demonstrate the proposed method
on synthetic as well as on real data.
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