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ABSTRACT

In this paper, we address the issue of Euclidean path mod-

eling in a single camera for activity monitoring in a multi-

camera video surveillance system. The paper proposes to use

calibrated cameras to detect unusual object behavior. Dur-

ing the unsupervised training phase, after metric rectifying

the input trajectories, the input sequences are registered to the

satellite imagery and prototype path models are constructed.

During the testing phase, using our simple yet efficient simi-

larity measures, we seek a relation between the input trajecto-

ries derived from a sequence and the prototype path models.

Real-world pedestrian sequences are used to demonstrate the

practicality of the proposed method.

Index Terms— Machine Vision, Camera Calibration, Eu-

clidean Path Modeling, Image Registration.

1. INTRODUCTION

There is a growing interest in analyzing objects such as cars

and pedestrians using computer vision systems. This is mainly

due to the fact the computer vision research has advanced to

systems that can accurately detect, recognize and track object

as they move through a scene. Based on this, it is possible

for other systems to make higher level inferences. In path

modeling and surveillance, our purpose is to build a system

that, once given an acceptable set of trajectories of objects in

a scene, is able to build a path model. We aim to learn the

routes or paths most commonly taken by objects as they tra-

verse through a scene. Once we have a model for the scene,

the method should be able to classify incoming trajectories as

conforming to our model or not.

Once the objects of interest (e.g. pedestrians) are success-

fully detected and tracked, using Javed et al. [1], the first step

is the removal of projective distortion from the object trajec-

tories. Thus upgrading them to Euclidean trajectories. This is

only possible once the camera is calibrated and we do this by

adopting the approach presented by [? ] for its simplicity and

ease of use.

Once the object trajectories are metric rectified, a path

model for the scene is constructed. Grimson et al. [2] records

object parameters like the position, direction of motion, ve-

locity size and aspect ratio of each connected region which

are then used to classify the objects. Boyd et al. [3] demon-

strate the use of network tomography for statistical tracking

of activities in a video sequence. Johnson et al. [4] use a

neural network to model the trajectory distribution for event

recognition and prediction. Recently [5] uses the 3D struc-

ture tensor for representing global patterns of local motion.

The most related work is that of Makris and Ellis [6] where

they develop a spatial model to represent the routes in an im-

age and use a simple distance measure to check the validity

of a test trajectory. One limitation of this approach is that

only spatial information is used for trajectory clustering and

behavior recognition. The system cannot distinguish between

a person walking and a person lingering around, or between a

running and a walking person. There exist no stopping criteria

for merging of routes.

During our training phase, assuming that the camera has

already been calibrated, object trajectories are rectified, clus-

tered and meaningful features are extracted to build a path

model, described in Section 2. During the test phase, this path

model is used to test the validity of the an incoming trajectory

(cf Section 3). We present results on real data in Section 4

before conclusion 5.

2. TRAINING PHASE

2.1. Trajectory and Image Rectification

Once the camera is calibrated, the object trajectories obtained

in the training phase can be metric rectified, as a part of our

training phase. As argued above, metric rectified trajectory

data presents a truer picture of the original data. From pro-
jective geometry, the line at infinity l∞ intersects the image

of the absolute conic ω at two complex conjugate ideal points

I and J, called the circular points [7]. The conic dual to the

circular points is given as C∗
∞ = IJT + JIT, where C∗

∞ is

a degenerate conic consisting of two circular points. Under a

point transformation, C∗
∞, invariant under similarity transfor-

mation, transforms as:

C∗′
∞ = (HPHA)C∗

∞(HPHA)T=
[

KKT KKTv

vTKKT vTKKTv

]
(1)

where HP and HA are respectively the projective and affine

components of the projective transformation. It is clear that
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Fig. 1. Rectified Trajectories:(b) represents reconstructed trajec-

tories for Seq #2 - shown in (a), while (d) represents Seq #3, shown

in (c), rectified.

the affine (K) and the projective(v) components are deter-

mined directly from the image of C∗
∞. Once C∗′

∞ is identi-

fied, a suitable rectifying homography is obtained by using

the SVD decomposition: C∗′
∞ = U

[
1 0 0
0 1 0
0 0 0

]
UT where

U is the rectifying projectivity. Fig. 1 depicts some results

obtained by rectifying the obtained training trajectories from

two of our three test sequences.

2.1.1. Registration to Aerial Imagery
Registration to the satellite imagery gives a global view of the

scene under observation. Since we do not have the knowledge

of Euclidean world coordinates of (at least) four points and

we want to make the process automatic, the estimated affine

and the perspective transform can be combined together to

efficiently metric rectify the video sequence such that the only

unknown transformation is the similarity transformation [8].

The results obtained by rectifying the test sequences are

shown in Fig. 2. Due to space limitations, only rectified re-

sults from sequence Seq # 3 are shown. The scene is rectified

by using the line at infinity which is obtained as: l∞ = ωvz

[7]. The obtained circular points are used to construct the

conic C∗′
∞ in order to obtain the rectifying projectivity, as de-

scribed in Section 2. The rectified image is shown in Fig.

2(b), and the registered image is shown in Fig. 2(c).

Registration of multiple cameras to the satellite image is

shown in Fig. 3. Three cameras were placed at three differ-

ent locations along the path shown in the figure. Behavior

of objects in the regions covered by the three cameras can be

modeled by the proposed method and gives, in essence, the

global behavior of the objects.

This registration is automated and provides satisfactory

results. Thus for any test sequence, the obtained path model

(to be described shortly) can be mapped to the corresponding

satellite image in order to obtain a global view - representing

the behavior of pedestrians in that particular area.

2.2. Model Building
Another important step during the training phase is to identi-

fying the different paths traversed by pedestrians in a scene.

This section elaborates on how the extracted trajectories are

used to create a path model.

A Typical Scene: A typical scene consists of a single

camera mounted on a wall or on a tripod looking at a certain

location. For any object i tracked through n frames, the 2-D

(a) (b) (c)

Fig. 2. Image rectification and registration results for Seq # 3, Seq
# 2 and Seq # 1. See text for more details.

CAM 1

CAM 2

CAM 3

SCALE INFO

Fig. 3. Multiple cameras registered to the corresponding satellite

image: The input images have a few new structures compared to the

old satellite image.

image coordinates for the trajectory obtained can be given as

Ti = {(x1, y1), (x2, y2), ..., (xn, yn)}.
Note that the trajectories will be of varying lengths, de-

pending on the location and velocity of the person. Since we

are dealing with physical pathways where the position of an

object is very important, we track the feet of the objects for

more precise measurement. The trajectories obtained through

the tracker are sometimes very noisy; therefore, trajectory

smoothing is performed.

2.3. Trajectory Clustering
Once we have rectified trajectories from our training set, the

next task to cluster the trajectories into different paths. Clus-

tering has to be based on some kind for similarity criteria.

Perceptually, humans tend to group trajectories based on their

spatial proximity. Since we are trying to create a path model,

it is essential that we perform clustering using the spatial char-

acteristics of the trajectories. Thus, we choose the Haus-

dorff distance as our similarity measure. For two trajecto-

ries Ti and Tj , the Hausdorff distance, D(Ti, Tj), is defined

as D(Ti, Tj) = max{d(Ti, Tj), d(Tj , Ti))}, where d(Ti,Tj) =
max min

a ∈ Ti b ∈ Tj
‖a − b‖.

One advantage of using Hausdorff distance is that it al-

lows us to compare two trajectories of different lengths. In

order to cluster trajectories into different paths, we formulate

a complete graph. Each node of the graph represents a trajec-

tory. The weight of each edge is determined by the Hausdorff

distance between the two trajectories. Spatially proximal tra-

jectories will have small weights because of lesser Hausdorff

distance, and vice versa. The constructed complete graph

needs to be partitioned; each partition having one or more

trajectories corresponds to a unique path. To perform such

a partition accurately and automatically, Normalized-cuts [9]

are used recursively to partition the graph.

The novel usage of Normalized-cuts for trajectory clus-

tering has certain advantages over other graph cut techniques.

First, it avoids bias for partitioning out small sets of points.

And second, the problem is reduced to finding the eigenvec-
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Fig. 4. (a) represents a typical scene where an object is traversing

an existing path. (b) An example of an average trajectory obtained

by applying DTW on two sample trajectories. Blue lines connect

corresponding matched points between the two trajectories.

tors of the system, which is very easy to compute. This tech-

nique makes it possible to perform recursive cuts by using

special properties of the eigenvectors. Fig. 5e-h shows the

results obtained by clustering one of our data set.

2.4. Envelope & Mean Path Construction
At this stage, trajectories have been clustered into different
paths by applying Normalized-cuts. Each path is represented
by trajectories that make up that particular path. Now we cre-
ate for all trajectories in each clustered path an envelope and
a mean path representation. An envelope can be defined as
the spatial extent of a path (cf. Fig. 4(a)). Applying Dynamic
time Warping (DTW) algorithm [10], where column repre-
sent trajectory A and the row represent trajectory B, pair-wise
correspondences between the two trajectories is determined.
Using DTW, distance at each instance is given by:

S(i, j) = min{S(i − 1, j − 1), S(i − 1, j), S(i, j − 1)} + q(i, j)

where the distance measure is q(i, j) = e
(−κ(i,j))

σκ +e
(−ij)

σe

2 , ij
represents the Euclidean distance, σκ represent standard de-

viation in spatio-temporal curvature, and σe represent a suit-

able standard deviation parameter for the trajectory (in pix-

els). This distance measure finds correspondences between

trajectories based on spatial as well as spatio-temporal curva-

ture similarity. By pair-wise application of the above men-

tioned algorithm on all trajectories of each path, (i) an enve-

lope is created to represent the spatial extent of the path, and

(ii) a mean trajectory (using DTW) to represent all trajecto-

ries in the path. For two trajectories, the mid-point of the line

joining the matched corresponding points is taken as the mean

path (cf. Figure 4b).

3. SCENE MODELING - TEST PHASE

A path model is developed that distinguishes between tra-

jectories that are (a) Spatially unlike, (b) Spatially proximal

but of different speeds, or (c) Spatially proximal but crooked.

Once the path models are learned as described above, we ex-

tract more features from the trajectories in each path in order

to verify the conformity of a candidate test trajectory.

Spatial Proximity: To verify spatial similarity, member-

ship of the test trajectory is verified to the developed path

model. All points on the candidate trajectory are compared

to the envelope of the path model. The result of this process

is a binary vector with 1 when a trajectory points is inside

the envelope and 0 (zero) when the point is outside the en-

velope. This information is used to make a final decision for

a candidate trajectory along with the spatio-temporal curva-

ture measure. If all candidate trajectory points are outside the

envelope, then this is an outright rejection.

Motion Characteristics: The second step is essential to

discriminate between trajectories of varying motion charac-

teristics. The trajectory whose velocity is similar to the ve-

locity characteristics of an existing route is considered simi-

lar. Velocity for a trajectory Ti(xi, yi, ti) , i = 0, 1, , N − 1,

is calculated as:

v′
i = (

xi+1 − xi

ti+1 − ti

yi+1 − yi

ti+1 − ti
), i = 0, 1, . . . , N − 1

Mean and the standard deviation of the motion character-

istics of the training trajectories are computed. A Gaussian

distribution is fitted to model the velocities of the trajectories

in the path model. The Mahalanobis distance measure is used

to decide if the test trajectory is anomalous,

τ =
q

(v′
i − m′

p)T (
X

)−1(v′
i − m′

p) < ϕ

Where v′
i is velocity from the test trajectory, m′

p is the

mean, ϕ a distance threshold, and
∑

is the covariance matrix

of our path velocity distribution.

Spatio-Temporal Curvature Similarity: The third step

allows us to capture the discontinuity in the velocity, accel-

eration and position of our trajectory. Thus we are able to

discriminate between a person walking in a straight line and a

person walking in an errant path. The velocity v′
i and accel-

eration v′′
i , first derivative of the velocity, is used to calculate

the curvature of the trajectory. Curvature is defined as,

κ =

√
y′′(t)2 + x′′(t)2 + (x′(t)y′′(t) − x′′(t)y(t))2

(
√

x′(t)2 + y′(t)2 + 1)3

where x′ and y′ are the x and y components of the veloc-

ity. Mean and standard deviation of κ’s are determined to fit

a Gaussian distribution for spatio-temporal characteristic. We

compare the curvature of the test trajectory with our distribu-

tion using the Mahalanobis distance, bounded by a threshold.

By using this measure we are able to detect irregular motion.

For example, a drunkard walking in a zigzag path, or a person

slowing down and making a u-turn.

4. RESULTS

The proposed system has been tested on three 320× 240 pix-

els resolution sequences containing a variety of motion tra-

jectories: Seq #1 is a short sequence of 3730 frames with 15

different trajectories forming two unique paths, the clustered

trajectories are shown in Fig. 5(b)-(d), Seq #2 is a sequence
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(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j) (k)

Fig. 5. (b)(c) show two clustered path for Seq #1 while (a) shows

all the trajectories in the training phase. (d) demonstrates a test case.

For Seq #2, all the trajectories in the training set and the subsequent

clusters are shown in (e)-(h). The test cases are shown in (i),(j) and

(k).

(a) (b) (c) (d) (e)

I II III IV

Fig. 6. Clustered trajectories from the training sequence of Seq #3:

(a) shows all the trajectories used in the training set. (b)-(e) are the

4 paths clustered from the input data. Column I and II demonstrate

normal behavior, while column III and IV demonstrate two examples

of unacceptable behaviors. See text for more details.

of 9284 frames with 27 different trajectories forming 3 differ-

ent paths after clustering, as shown in Fig. 5(e)-(h), Seq #3
contains over 20 minutes of data forming over 100 trajecto-

ries of people walking around in the scene. The trajectories

are clustered into 4 path models, as shown in Fig. 6(a)-(e).

One test case from Seq #1 is shown in Fig. 5(d). The

training sequence only contained people walking in the scene.

But the bicyclist shown in (d) has motion characteristics dif-

ferent (having higher speed) than the training cases, hence

detected as abnormal behavior (displayed in red). Three test

cases from Seq #2 are depicted in Fig. 5(i)-(k). A person

walking in a zig-zag fashion (Fig. 5(i)), and a person running

(Fig. 5(j)) are flagged for an activity that is considered as an

unusual behavior. Fig. 5(k) demonstrates a case where a per-

son walks at a normal pase in conforming behavior. Some of

the test cases from Seq #3 are shown in Fig.6. Two cases in

the first two columns contain people walking at normal pace

- following the path model constructed in the training phase,

hence flagged with a black trajectory i.e. acceptable behavior.

Third column is flagged unacceptable as the person moves

left, which is not contained in the model. Similarly, 4th col-

umn contains a golf cart driven across the scene.

5. CONCLUSION
This paper proposes a unified method for path modeling, de-
tection and surveillance. The trajectory data is metric recti-
fied to represent a truer picture of the data. Metric rectified

observed scene is registered to aerial view to extract metric
information from the video sequence, for example, the ac-
tual speed of an object. Normalized-cuts are then used to
cluster metric rectified input training trajectories into vari-
ous paths. We extract spatial, velocity and spatio-temporal
curvature based features from the clustered paths and use it
for unusual behavior detection. The proposed path model-
ing method has been extensively tested on a number of se-
quences and have demonstrated satisfactory results. Recog-
nizing more complex events by attaching meanings to the tra-
jectories is also one of our future goals.
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