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ABSTRACT

We propose an unsupervised fuzzy approach for motion trajectory
clustering. The proposed approach is divided into three main steps:
first Mean-shift is used for local mode seeking by analyzing trajec-
tory data over multiple feature spaces. This step generates a set of
tentative clusters. Next, adjacent clusters are combined by analysing
the cluster attributes across all feature spaces. Sparse clusters are
finally considered as generated by outlier object behaviors and then
removed. The performance of the proposed algorithm is evaluated
on real outdoor video surveillance scenarios with standard data-sets
and it is compared with state-of-the-art techniques.

Index Terms— Video surveillance, Mean-shift, clustering, ob-
ject trajectories.

1. INTRODUCTION

Object trajectory analysis is an important step in applications like
video surveillance, automotive systems, medical screening and au-
tonomous robotic systems. Trajectory analysis, for example based
on clustering, helps in defining events of interest and in identify-
ing anomalies. Trajectory clustering classifies trajectory data-sets
into homogeneous groups using an appropriate trajectory modeling.
This is achieved by first transforming the trajectories into an appro-
priate feature space and then defining an efficient distance measure
between trajectories in the feature space.

Porikli [1] uses a supervised Hidden Markov Model (HMM) to
represent each trajectory into a feature space formed by hidden pa-
rameters. This framework can accurately measure coordinate, orien-
tation, and speed similarity of trajectory pairs. Breitenbach et al. [2]
present a semi-supervised technique based on a consistency method
that learns intrinsic structures of a trajectory and then uses the infor-
mation to detect anomalous events in a scene. Bashir et al. [3] use
Principal Component Analysis (PCA) to represent trajectories by re-
ducing their dimensionality for indexing and retrieval of video data.
Antonini et al. [4] use Independent Component Analysis (ICA) to
model trajectories for pedestrians counting in a video sequence. Li
et al. [5] have recently proposed Trajectory Directional Histograms
(TDH) to represent the statistical directional distribution, and to com-
plement the information from resampled trajectories for vehicle mo-
tion trajectory clustering.

After transforming the trajectories into an appropriate feature
space, the next step is to organize the data into clusters based on
some homogeneity criteria (distance measure). The most common
homogeneity criteria are conventional (normalized) distance mea-
sures [6, 7]. Mean, Maximum, Minimum, modified Hausdorff-type
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distances ([8]) and Longest Common Subsequences (LCSS) ([9]) are
also popular similarity measures for trajectory clustering. Zhang et
al. [10] compared different similarity measures and feature space
representations and found that a combination of PCA with the Eu-
clidean distance outperforms other techniques.

The trajectory clustering approaches presented so far are either
supervised (e.g., they need training for the estimation of the model
parameters) or semi-supervised (e.g., they require a priori knowledge
of the number of clusters). In this paper, we proposed an unsuper-
vised fuzzy clustering approach that uses Mean-shift over a multi-
feature space representation. Moreover, as the trajectory clustering
results obtained from the independent feature spaces have variable
degree of belongingness, we analyze the consistency of behavior of
the trajectories across all feature spaces to obtain the final clustering.
A cluster merging and a cluster removal procedure are also included
in the approach to refine the clustering results without requiring the
prior knowledge of the number of clusters.

The paper is organized as follows. Sec. 2 presents the proposed
clustering technique. The experimental results and a comparison
with the state of the art are discussed in Sec. 3. Finally, in Sec. 4
we draw the conclusions.

2. FUZZY CLUSTERING USING MEAN-SHIFT (FMS)

Let a trajectory Tj be represented as Tj = {(xi
j , y

i
j); i = 1, . . . , Nj},

where (xi
j , y

i
j) is the estimated position of the target in the image

plane and Ni is the number of trajectory points. Each trajectory
needs to be transformed in appropriate feature spaces before cluster-
ing. Let Fm(.) be a transformation functions defined as Fm(T ) →
Ψm, with m = 1, ..., M . The transformation Fm(.) maps each tra-
jectory to a d-dimensional feature space, Ψj , with j = 1, ..., J . We
use Ψ1, the space spanned by the first two components of the trajec-
tory data obtained through PCA, and Ψ2, the space spanned by the
average velocity vector of each trajectory. After transforming the
trajectories into the feature spaces, we analyze the trajectory data
using Mean-shift in each space to seek the local modes and generate
the clusters. Initially, the mode seeking process starts by fixing first
trajectory as a seed point; once the Mean-shift process converges to
the local mode all the points within the bandwidth of the kernel are
assigned to that mode. The assigned points are not considered for
future iterations. The next seed point is selected randomly from the
unprocessed points and the process terminates when all points as-
signed to a corresponding local mode. The details of the Mean-shift
procedure itself are given in next section.

2.1. Mean-shift clustering

Mean-shift is a clustering technique that climbs the gradient of a
probability distribution to find the nearest dominant mode or peak
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Fig. 1. Example of Mean-shift clustering. Points represent trajecto-
ries (Key: blue: unprocessed points; magenta: points within kernel
bandwidth; green: mode-seeking path; triangles mode at each itera-
tion)(a) Initial trajectory representation. (b) - (d) Results of the 1st,
5th, and 8th iteration of the mode seeking procedure (zoom)

([11]). Let χl ∈ Ψj ; l = 1, ..., L be a set of L data points. The

multivariate density estimator f̂(x) is defined as

f̂(x) =
1

Lhd

LX
l=1

K
“x − χl

h

”
, (1)

where h is the bandwidth and K(.) is a kernel, defined as

K(x) =

j
1

2Vd
(d + 2)(1 − xT x) if xT x < 1

0 otherwise
, (2)

with Vd representing the volume of a d-dimensional sphere. The
density gradient estimate of the kernel can be written as

∇̂f(x) = ∇f̂(x) =
1

Lhd

LX
l=1

∇K
“x − χl

h

”
. (3)

Equation (3) can be re-written as

∇̂f(x) =
d + 2

hdVd

0
@ 1

Lc

X
χl∈S(x)

(χl − x)

1
A , (4)

where S(x) is a hypersphere of radius h, with volume hdVd, centered
in x and containing Lc data points. The Mean-shift vector ζh(x) is
defined as

ζh(x) =
1

Lc

X
χl∈S(x)

(χl − x) , (5)

and, using Eq. (4), we can express ζh(x) as

ζh(x) =
hdVd

d + 2

∇̂f(x)

f̂(x)
. (6)

The output of the Mean-shift procedure is the set of data points as-
sociated to each mode. This process is illustrated in Fig. 1.
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Fig. 2. Example of Cluster Merging (CM). (a) Initial trajectory clus-
tering result (5 clusters); (b) final clustering result after CM (4 clus-
ters)

2.2. Fuzzy cluster analysis and refinement

To refine the clustering results, we apply a Cluster Merging (CM )
procedure that fuses two adjacent clusters if the density modes are
sufficiently close. The proximity condition is defined by the 10%
of the kernel bandwidth h. Each trajectory may have a different
degree of belongingness to more than one cluster, in multiple feature
spaces. To obtain the final clustering, each trajectory is assigned to
a particular cluster if its belonginess is consistent across all feature
spaces.

Let ξk and ξk+1 be the number of clusters in Ψk and Ψk+1,
with ξk ≤ ξk+1 (note that different feature spaces may generate dif-
ferent numbers of clusters). Also, let Ck

i ∈ Ψk and Ck+1
j ∈ Ψk+1

be clusters in the respective feature spaces. The next step is to find
the correspondence among the clusters found in feature spaces. Let
ν̂ be the index of the cluster in Ψk+1 that has the maximum corre-
spondence with the ith cluster of Ψk, i.e.:

ν̂ = argmax(Ck
i ∩ Ck+1

j ), (7)

with j = 1, ..., ξk+1. Let the cluster Bi = Ck
i ∩ Ck+1

ν̂ contain the

overlapping elements in Ck+1
ν̂ and Ck

i . If { Δ }q
i , with q = 1, 2,

represents non-overlapping elements, then Δ1
i = Ck

i - (Ck
i ∩ Ck+1

ν̂ )

and Δ2
i = Ck+1

ν̂ - (Ck
i ∩ Ck+1

ν̂ ), with Δ1
i and Δ2

i forming new
independent clusters.

Finally, CM is applied again to merge adjacent clusters based
on the proximity condition and the modes associated to too few data
points are considered outliers. The outlier condition is set as the 5%
of the maximum peak in the dataset. An example of CM result is
shown in Fig. 2

3. RESULTS

We demonstrate the proposed clustering approach on three real out-
door traffic scenes and compare the results with those obtained with
state-of-the-art methods1. The following test sequences are used:
S1, a highway surveillance sequence from the MPEG-7 dataset (134
trajectories); S2 and S3, from VACE [12] dataset (47 and 159 trajec-
tories, respectively). All sequences are captured at 25 Hz. The num-
ber of clusters for each sequence (ground truth), γ, is: γ(S1) = 2,
the γ(S2) = 3, γ(S3) = 4. The accuracy, λ, of a clustering result
is calculated as

λ =

j
1
N

Pγ
i=1(Pi) if τ > γ

1
N

Pτ
i=1(Pi) otherwise

, (8)

1High resolution figures with the results and additional demo videos are
available at http://www.elec.qmul.ac.uk/staffinfo/andrea/traj.html

III - 214



where N is the total number of trajectories in a dataset, P is the
number of trajectories correctly clustered in a cluster Cm, and τ is
the total number of clusters estimated by the algorithm. If τ > γ,
then, after sorting the P for all τ clusters in descending order, we
select the top γ clusters to calculate the accuracy.

We compare the proposed method with the Coarse-to-Fine clus-
tering technique (CF ) ([5]). Moreover, we modified the second
stage of CF by replacing trajectory interpolation based distance
measure with the Longest Common Subsequences LCSS ([9]) to
improve its performance with real data. We refer to this modified
technique as Modified Coarse-to-Fine clustering (MCF ).

(a) (b)

(c) (d)

Fig. 3. Comparison of trajectory clustering results on the dataset S1
(a). (b) Clustering with FMS; (c) clustering with CF ; (d) cluster-
ing with MCF

(a) (b)

(c) (d)

Fig. 4. Comparison of trajectory clustering results on the dataset S2
(a). (b) Clustering with FMS; (c) clustering with CF ; (d) cluster-
ing with MCF

Fig. 3, Fig. 4, and Fig. 5 show the final clustering results for the
methods under analysis. Although the three clustering techniques
estimate the correct number of clusters, it is possible to notice sensi-
ble variations between the clusters discovered by the different meth-
ods. Table 1 shows a comparison of the accuracy obtained with
the three methods (98.50% for FSM , 94.93% for CF and 97.84%
for MCF ). In particular, in S1 and S2, MCF performed better

than FMS by 0.08% and 0.2% respectively, but, for S3, the perfor-
mance of FMS is 1.70% better than MCF . When the number of
trajectories increases and the variation among different object trajec-
tories is low, FMS outperforms MCF . The cluster level analysis
also demonstrates that , on average, MCF performed better than
CF (+2.34% for S1, +3.04% for S2, and +3.08% for S3).

(a) (b)

(c) (d)

Fig. 5. Comparison of trajectory clustering results on the dataset S3
(a). (b) Clustering with FMS; (c) clustering with CF ; (d) cluster-
ing with MCF

Finally, to test the robustness of the algorithms, we evaluate the
clustering results when the input data are corrupted (i) by noise and
(ii) by a reduction of the trajectory sampling rate (as MCF out-
performed CF , we compare FMS and MCF only). Fig. 6 (left
column) shows the clustering results for the S1 dataset after adding
Gaussian noise (up to σ = 10% of the length of the longest trajec-
tory) to the input data. Fig. 6 (right column) shows the clustering
results after reducing the number of observations for each trajec-
tory in the S1 dataset (progressively decreased sampling rate up to
sub-subsampling step 5). The results for both FMS and MCF on
the three dataset are visualized in Fig. 7. It is possible to notice
that for FMS every 1% increase in noise causes approx. 0.45%
degradation in the accuracy, whereas the degradation for MCF is ap-
prox. 5%. Moreover, a progressive downsampling by 1 causes 4.1%
and 14.5% overall degradation for FMS and MCF , respectively.
The comparison with the state of the art shows that the proposed ap-
proach is more robust to noise and to sub-sumpling of the trajectory
dataset.

4. CONCLUSIONS

We proposed an unsupervised fuzzy clustering algorithm for object
trajectories analysis. The algorithm is based on first applying Mean-
shift on distinct feature spaces, one generated from PCA and one
generated by object velocities. Next, adjacent clusters in a feature
space are merged and the final cluster configuration is established by
finding consistent behaviors of the trajectories in all feature spaces.
Moreover, final clusters with few associated trajectories are consid-
ered as outliers and removed. The algorithm was validated on real
outdoor traffic scenarios from standard test sequences and compared
with state-of-the-art approaches. The results demonstrated that the
proposed algorithm is more robust to noise and to variations in the
frequency of object observations. Our current work addresses the
issue of perspective projection in trajectory clustering.
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Table 1. Comparison of trajectory clustering accuracy for FMS, CF , and MCF on three standard datasets

S1 S2 S3 Overall
Algorithm C1 C2 C1 C2 C3 C1 C2 C3 C4 average

FMS 98.24 97.81 99.45 99.87 97.37 99.96 94.10 99.87 99.85 98.50
CF 97.31 94.23 99.41 92.27 96.57 96.87 93.68 98.65 85.43 94.93
MCF 98.90 97.32 99.54 99.70 98.13 93.12 98.88 99.93 95.02 97.84

(a) (b)

(c) (d)

Fig. 6. Comparison of trajectory clustering robustness for FMS
and MCF on S1 for noisy and sub-sampled input data. (a) FMS
clustering results on noisy data (+10%); (b) FMS clustering results
on sub-sampled data (sub-sampling step=5); (a) MCF clustering
results on noisy data (+10%); (b) MCF clustering results on sub-
sampled data (sub-sampling step=5)
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