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ABSTRACT

We propose a novel learning algorithm to detect moving pedes-
trians from a stationary camera in real-time. The algorithm
learns a discriminative model based on eigenflow, i.e., the
eigenvectors derived from applying Principal ComponentAnal-
ysis to the optical flow of moving objects, to differentiate
between human motion patterns from other kind of motions
like of cars etc. The learned model is a cascade of Adaboost
classifiers of increasing complexity, with eigenflow vectors as
the weak classifiers. Unlike some recent attempts to use mo-
tion for pedestrian detection, this system works in real-time.
Moreover, the system is robust to small camera motion and
slow illumination changes, and can detect moving children
even though the training data had only adult pedestrians.

Index Terms— Optical Flow, PCA, AdaBoost

1. INTRODUCTION AND RELATED WORK

Pedestrian detection is a hard problem in computer vision.
High intra-class variability of the pedestrians due to variations
in pose, articulation and clothing makes the detection process
very challenging. The background clutter, different lighting
conditions and fluctuations in weather conditions add to fur-
ther complications.
Most of the pedestrian detection systems in the literature

use appearance cues to detect pedestrians in a single image.
Cues like wavelet response [1], histogram of oriented gradi-
ents [2] etc. have been used to learn a shape-based model
to segment out human-like objects from a scene. However,
appearance alone is not sufficient to detect humans in an un-
controlled outdoor environment.
Recently, there has been a lot of interest in using motion

patterns to detect humans. Viola et al [3] used spatio-temporal
filters based on shifted frame difference to augment the detec-
tion using spatial filters. Since dense optical flow is a popu-
lar method to represent motion, Fablet and Black [4] used
it to learn a generative human-motion model while Hedvig
[5] trained Support Vector Machines to detect human-motion
patterns. However, most of the optical flow-based detection
methods are not real-time due to high computational cost. In

(a) Sample images (b) Horizontal flow

(c) First 8 PCA vectors for the horizontal flow

Fig. 1. (a) Sample images from the pedestrian training data set. (b)
Corresponding horizontal flow of images in (a). (c) First eight PCA
vectors for the horizontal flow component of the pedestrian motion
patterns in the training data.

this paper, we present a novel detection system that works in
real-time (320x240@ 10fps on Pentium M 1.86 GHz) .
The rest of the paper is organized as follows: Sect. 2

describes the proposed method with emphasis on the optical
flow method employed (Sect. 2.1), the training stage (Sect.
2.2) and the detection method (Sect. 2.3), Sect. 3 evaluates
the performance of the algorithm in different conditions and
Sect. 4 concludes with a discussion and future work.

2. APPROACH

The pedestrian detection system that we propose learns to dif-
ferentiate between human-like and non-human-like motion
patterns. Figure 2 gives an overview of the system. The
two main components of the system are computing real-time
dense optical flow and learning the discriminative classifier.

2.1. Real-time Dense Optical Flow

Dense optical flow technique is a popular method to estimate
motion between consecutive frames. Pioneering work in this
field was done by Horn and Schunck [6]. Thereafter, several
improvements have been proposed to get more accurate flow
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Fig. 2. Overview of the proposed pedestrian detection

(a) Previous image (b) Current image

(c) HS flow [6] (d) Robust flow [7] (e) CLG [8] (f) CLG (Modified)

Fig. 3. Horizontal flow computed using different optical flow algo-
rithms.

by either changing the weighting function of the regulariza-
tion term in the global minimization condition [9] or posing
the problem as a non-linear robust minimization instead of
standard quadratic optimization [7]. However, most of these
modifications are computationally expensive and hence, are
not suitable for real-time applications.
Recently, Bruhn et al [8] proposed the use of multigrid

methods to compute dense flow using CombinedLocal Global
method (CLG). The image-drivenweighting function used by
them was:

w(x, y) =
1√

1 + (f2
x + f2

y ) ∗ α
(1)

where fx and fy are the image gradients and α is a constant.
Though such a function is fast to compute, but is less accurate
as it doesn’t take into account any temporal information. To
circumvent this problem, we propose a new spatio-temporal
weighting function:

w(x, y) =
1√

1 + (f2
x + f2

y ) ∗ (α ∗ f2
t + β)

(2)

where ft denotes the temporal gradient, and α and β are con-
stants. Figure 3 shows a comparison of our modified CLG
method with other popular methods.

2.2. Learning the Discriminative Classifier

Training Data: The training data consisted of 2400 pedes-
trian and non-pedestrian optical flow patterns each, with both
horizontal (Fig. 1(a),(b)) and vertical components. While the
pedestrian data was generated by hand-labeling moving peo-
ple in the images, the non-pedestrian data was collected by
scanning a variable sized window in the videos containing
moving objects like cars, partial limbs etc but no complete
moving human.
Each of these was resized to 16x8 resolution using bilin-

ear interpolation and normalized individually to lie between
[−1, 1]. Finally, both the flow components were concate-
nated to give a 256-dimension motion pattern vector x =
[u1, . . . , u128, v1, . . . , v128]

T for each training data sample.

Weak Classifier: Principal Component Analysis was done
separately on pedestrian and non-pedestrian data to obtain
eigenflow [10]. Figure 1(c) shows the first few u-flow eigen-
vectors for the humanmotion. As is evident, the second eigen-
flow vector captures the motion of the hands/arms while the
next two represent the leg motion. Collecting all eigenflow
vectors, 256 for each class, we get a total of 512 vectors that
act as a pool of features for AdaBoost. Taking the magnitude
of projection (invariant to the direction of motion) of a train-
ing data sample x onto an eigenflow vector zj and finding the
optimum threshold θj that minimizes the overall classification
error yields a weak classifier hj .

hj(x) =

{
1, if |xT zj | ≶ θj

0, otherwise.
(3)

Feature Selection and AdaBoost: The procedure to choose
the most discriminative of these weak classifiers is motivated
by the face detection algorithm proposed by Viola-Jones [11]
and is described in Table 1. The final strong classifier is a
weighted vote of the weak classifiers (Eq. (4)). Figure 4(a)
depicts the first two features selected by this algorithm. While
the first one responds to motion near the boundary, the second
one gives high value to motion within the window. Individ-
ually, they are weak but as a combination, they can perform
much better (low value for the first and high for the second)
and this is the basic idea that AdaBoost builds upon to learn
a strong classifier. Figure 4 (b) shows the ROC curve for the
strong classifier as number of weak classifiers are increased.
The comparison with linear SMV classifier is also shown.
Clearly, SVM is outperformed by choosing merely 4 weak
classifiers for the Adaboost.

Cascade of AdaBoost Classifiers: Even with AdaBoost, in-
creasing the number of weak classifiers would hurt the real-
time operation of the system while selecting too few would
compromise the detection accuracy. An efficient way to re-
tain the advantages of being both fast and accurate is to train
a cascade of AdaBoost classifiers [11]. Under this scheme,
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Fig. 4. (a) First two most discriminative PCA vectors. (b) Com-
parison of ROC curves: Linear SVM and Adaboost (with different
number of weak classifiers or features).

the early stage classifiers have fewer number of weak classi-
fiers and hence, are really fast at classification. These are able
to reject flow patterns that are highly unlikely to belong to
humans but retain the ones that have some resemblance. The
flow patterns that pass these earlier stages need more complex
analysis and this is where later stages of the cascade prove
useful. To be labeled as a detection, a data sample has to pass
all the stages in a cascade.
In our implementation, we have 7 stages in the cascade.

The first classifier in the cascade has 4 weak classifiers and
is able to reject approx. 40% of the non-pedestrian motion
patterns while retaining almost all the pedestrian data. The
second stage has 10 classifiers, third 15 and so on. The last
stage has 100 classifiers. The pedestrian training data was the
same for all the stages. The non-pedestrian data for the next
stage was generated by collecting the false positives from the
current classifier cascade (maximum2400) from other videos.

2.3. Detecting Human Motion Patterns

Human motion patterns are detected in a video sequence us-
ing the procedure depicted in Fig. 2. The optical flow images
are scanned using sub-windows of 7 different scales - 32x16,
48x24, 64x32, 80x40, 96x48, 128x64 and 160x80 - that are
kept multiples of 16x8 to allow fast downsampling. Each
scale has an associated step size that increases with scale to
prevent excessive overlap between neighboring sub-windows.

Camera position and orientation: The smaller sub-windows
scan for far-off pedestrians while the larger sub-windows search
for ones closer to the camera. Without any knowledge about
the camera geometry, an exhaustive search has be done in the
whole image. However, knowing a priori, the position and the
orientation of the camera can limit the scan range, since the
pedestrians can be found only on the ground plane. In the ex-
perimental results shown in Fig. 5(a) and (b), exploiting such
an information reduced the number of scanned windows by

Table 1. Feature selection and training AdaBoost classifier

• Given the training data (x1, y1), (x2, y2), . . . , (xn, yn) where xi

is the eigenflow and yi is 0 for non-pedestrian and 1 for pedestrian
examples.

• Initialize the weights w1,i = 1

2l
, 1

2m
for yi = 0, 1 respectively,

where l and m are the number of pedestrian and non-pedestrian ex-
amples.

• for t = 1, . . . , T

1. Normalize the weights wt,i ←
wt,iP

n
j=1

wt,j

2. Select the best weak classifier ht with respect to the weighted
error: εt = minj

P
i wi|hj − yi|

3. Update the weights: wt+1,i = wt,iβ
1−ei
t

where ei = 0 if example xi is correctly classified by ht, ei =
1 otherwise, and βt = εt

1−εt
.

• The strong classifier is given by:

C(x) =

(
1,

PT
t=1 αtht(x) ≥ 1

2

PT
t=1 αt

0, otherwise.
(4)

where αt = log 1

βt

more than half.

Minimum flow criterion: Every candidate sub-windowmust
satisfy a minimum flow criterion before being tested against
the classifier. Since, due to parallax, the far-off pedestrians
would appear to be moving slower as compared to the nearer
ones, the minimum optical flow thresholds vary with scale
of the sub-window. Furthermore, instead of having a single
threshold for the whole sub-window, three thresholds are em-
ployed, one each for three equal horizontal sub-regionswithin
the sub-window. This rejects the regions that have non-zero
flow but the flow distribution doesn’t conform to the erect hu-
man motion. All these thresholds were found from the pedes-
trian training data.
If a sub-window satisfies the minimum flow criterion, it is

resized to 16x8, normalized and fed to the cascade of classi-
fiers. Multiple over-lapping detections are merged to report a
single detection.

3. EXPERIMENTS

The system was implemented in C++ using OpenCV libraries.
On a 1.86 GHz Pentium M machine, we were able to detect
moving pedestrians in 320x240 resolution grayscale image
sequences at 10 fps. Computationally, a total of 429 dot prod-
ucts need to be computed for every candidate sub-window in
the worst case. This is in sharp contrast to 13,000 dot prod-
ucts required per sub-window by linear SVM, one per support
vector, resulting in an fps of 0.125.
Figure 5 shows some of the detection results in the test

videos. The algorithm is able to detect humans in different
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Fig. 5. Experimental results. (a) Detecting multiple humans in the
presence of moving cars. (b) Detection while there’s change in illu-
mination. (c) Moving child detection and small camera motion. (d)
Detection in the presence of small camera motion.

poses and moving at different pace and reject other moving
objects like cars (Fig. 5(a)). The false alarm rate was about
one in every three frames when objects other than humans
are present in the scene. The high false alarm rate is due to
the large number of candidate sub-windows (about 1000) in
each frame. The miss rate is negligible for nearby pedestrians
but the far-off pedestrians get rejected, at times, since their
optical flow is too small. The system is robust to slow illu-
mination changes due to occasional cloud cover (Fig. 5(b)),
small camera motion (Fig. 5(c),(d)) and can also detect mov-
ing children (Fig. 5(c)). Such a system can be a great applica-
tion for child safety, e.g. preventing accidents from reversing
vehicles. However, people moving in groups can be missed
since the flow in candidate sub-window doesn’t correspond to
clean human motion.

4. CONCLUSION AND FUTUREWORK

In this paper, we have proposed a novel pedestrian detection
system by learning to discriminate between human-like mo-
tion patterns from other kind of motions like that of moving

cars. The system has been shown to work in real-time with
performance superior to that of a linear SVM and is robust
to illumination changes and small camera motion. Moreover,
the applicability of such a framework towards detecting mov-
ing children was also explored.
As future work, we plan to analyze the relationship be-

tween the global motion of a moving blob and its local intra-
blob motion to reduce the false positives. Further, we plan
to extend the current system to a moving camera by either
warping the flow or by using its gradient.
Acknowledgement: Work is supported in part by General
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