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ABSTRACT
This paper describes a real-time, strip-based, low-complexity
document page classification algorithm, which can be used as a
copy mode selector in the copy pipeline. The benefits of such a
copy mode selector include improving copy quality, simplify-
ing user interaction, and increasing copy rate.

Index Terms— document classification, page classification.

1. INTRODUCTION

The general workflow of a digital copier is to take scanned im-
ages from its scanner, process these images, and send them to
its printer for the physical reproduction. A copier must be able
to process many different kinds of originals. These originals
may have different types of content, such as text, line art, graph-
ics, and natural photos; they may be printed on different kinds
of media, for example, on papers of various levels of quality
and brightness; they may be created using different rendering
techniques such as halftone or continuous tone. These differ-
ent kinds of originals may interact in many different ways with
various limitations of copy pipeline such as streaks, stray light,
color fringing, drift, gamut, moiré, etc. Fixed settings of the
copy pipeline would therefore produce varying levels of repro-
duction quality, depending on the type of the original. To re-
solve this issue and generate user-preferred reproductions, dif-
ferent configurations of the copy pipeline are required. We call
these different configurations “copy modes”.
As illustrated in Fig. 1, a much better reproduction is ob-

tained when the original matches its optimal configuration. Con-
sider a photograph and a fax. The optimal configuration for a
photo (i.e., the photo mode) has smoothing and a wide tone
curve range to achieve noise reduction and color accuracy. The
optimal configuration for a fax (i.e., the text mode) has sharp-
ening and a nearly bilevel curve to achieve an enhanced repro-
duction. The left panel of Fig. 1 is the original, and the other
two panels are the results of processing in the photo and text
modes, respectively. Users prefer the cleaner background, in-
creased contrast, and sharpness of the text mode and do not like
the over-smoothed, low-density text and the dirty background
in the photo mode. Therefore it is essential to match the origi-
nals with the most appropriate copy modes.
Three methods exist to match the originals to the copy modes.

The “institutional copier” method prompts the user to describe

Fig. 1: Processing a fax in photo and text modes. Left to right: original, photo
mode, text mode.

attributes of the original to determine a matching mode. It re-
quires a trained user. The “defaults to a single mode” method
yields poor quality for originals that do not match that single
mode. The “sub-menus” method provides users the opportu-
nities of selecting modes through optional sub-menus. Users
mostly ignore or are unware of such options. None of the above
three methods satisfy user interaction and copy quality expec-
tations.
In this paper, we propose a novel document page classifi-

cation algorithm which can be used as a copy mode selector in
the copy pipeline. Many existing algorithms segment the page
and label each segmented region with an appropriate class la-
bel [1–5]. These algorithms require simultaneous access to the
entire page image, and visit each pixel multiple times. On the
other hand, any algorithm applicable to the copy pipeline must
process image data one strip at a time, and never revisit previ-
ously processed strips. This makes it impossible to apply the
existing approaches [1–5]. Our proposed algorithm operates
on strip-based data and makes one pass over each strip. The
computational complexity and memory requirements of our al-
gorithm are both very low. These advantages make our algo-
rithm an ideal candidate to be implemented in the existing copy
pipeline without altering the hardware.
In the rest of the paper, we describe and illustrate our al-

gorithm: Section 2 provides its general overview; Section 3
describes its specifics; Section 4 contains experimental results.

2. ALGORITHM OVERVIEW

Figure 2 illustrates a possible implementation of our classifi-
cation algorithm. The classifier resides between the front end
and the back end of the pipeline, and directs the image data
to the most appropriate processing mode. The revised copy
pipeline not only improves copy quality and simplifies user in-
teraction, but also significantly increases copy rate in at least
one case, as follows. The pipeline reconfigures for each page
in a multi-page copy job from an automatic document feeder
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Fig. 2: One possible implementation of our page classification algorithm in the existing copy pipeline.

Fig. 3: Classification decision tree.

(ADF). When it detects a black-and-white page inside the job, it
implements 3-to-1 channel reduction and enters the faster mono
pipeline mode.
We work with a specific copy pipeline equipped with eight

different copy modes which are all possible combinations of
mono/color and text/mix/picture/photo. Mono mode is a con-
figuration specially optimized for mono originals while color
mode is optimized for color originals. Text mode is optimized
for text, line arts, graphics, handwritten text, and faxes; pic-
ture mode is for high dynamic range halftoned originals such
as glossy magazine pages; photo mode is for continuous tone
natural scenes on photographic paper; mix mode is for all other
types of originals. Our goal is to classify the scanned image
of the original into the following eight distinct classes: color-
text, color-mix, color-picture, color-photo, mono-text, mono-
mix, mono-picture, and mono-photo. For simplicity, we just
use the names of the copy modes as the names of candidate
classes. Color-mix is the default class when the classification is
hard to make.
We follow a tree-like decision structure illustrated in Figure

3. A mono vs. color classifier is placed at the root level of the
decision tree. Then text vs. nontext classifiers, text/mix vs. pic-
ture/photo classifiers, and picture vs. photo classifiers are de-
ployed at the second, third, and fourth level of the decision tree.
Note that starting from the second level of the decision tree, the
two classifiers on the same level share the same methodology
and the only difference between them is some tunable parame-

ters. In the following section, we discuss each of these classi-
fiers.

3. ALGORITHM DETAILS

3.1. Color vs. Mono Classifier

We assume that all image data are from 300 dot-per-inch (DPI)
scans, gamma-corrected, and represented in RGB color space
with 8 bits per channel.
The essence of our color vs. mono classification algorithm

is detecting image patches which are close to gray and declaring
an image to be mono only if every patch is close to gray. Basing
the decision on patches that are too small would not be robust
to noise; on the other hand, small color regions may be missed
if the patches are too large. We have experimentally found that
partitioning an image into 32 × 32 blocks works well.
The specifics of our algorithm are as follows. If R(p) =

G(p) = B(p) for a pixel p, we say the pixel is gray, where
R(p),G(p), andB(p) are the pixel’s red, green, and blue inten-
sities, respectively. We define the colorfulness C(p) of a pixel p
as the following quantity:

C(p) = max[R(p), G(p), B(p)] − min[R(p), G(p), B(p)].

Note that if C(p) = 0 the pixel is gray. Note also that the
quantity C(p) may be interpreted as the “Manhattan distance”
from the point (R(p), G(p), B(p)) to the line R = G = B in
the RGB space.
The colorfulness C(b) of a block of pixels b is defined as

the sum of C(p) over all the pixels p that belong to the block
b. We partition the image into 32 × 32 blocks and define the
colorfulness of the image, Cimage as the maximum of C(b)
over all 32 × 32 blocks b. We classify an image as color if
Cimage is larger than a threshold, and we classify it as mono
otherwise. The threshold is determined from training data.

3.2. Text vs. Nontext Classifier

Here nontext refers to all classes other than text, i.e., mix, pic-
ture, and photo. We use two properties of text documents in
order to distinguish them from documents that contain pictures
or photos in addition to (or instead of) text. First, the histogram
for a typical text region has peaks that are more narrow and tall
than the peaks in a typical picture or photo histogram. For ex-
ample, the histogram for a patch of sharp mono text would have
two large and narrow peaks, one near white and one near black.
Second, nontext areas of a text document typically contain only
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a few colors. (If, in addition to text, a document contains many
colors, we would want to classify it as mix.)
We extract histogram peakiness features via the following

procedure. We partition the image into 8×64 blocks and calcu-
late 64-bin R, G, and B histograms for each block. The k-span
of a histogram is defined as the largest number of consecutive
bins in the histogram whose values are greater than or equal to
k. The k-span of an image is defined as the largest k-span over
all 64-binR,G, andB histograms of its 8×64 blocks. For each
image, we form a ten-dimensional feature vector consisting of
k-spans of the image for k = 3, 6, . . . , 30.
This feature extraction procedure is used to calculate the

histogram flatness score for any image as follows. We estimate
the means of text and nontext feature vectors as well as a com-
mon covariance matrix, based on labeled training data. For any
image whose feature vector is x, we then define the histogram
flatness score

F = (mnontext − mtext)
T ΣF x,

where mnontext and mtext stand for the mean of the nontext
and text feature vectors, respectively, ΣF stands for the com-
mon inverse covariance matrix of the text and nontext feature
vectors, and T denotes the transpose of a vector. A small his-
togram flatness score implies peakiness of the histogram and
suggests that the image is text, whereas a large histogram flat-
ness score indicates that the image is nontext.
In addition to the histogram flatness score, we compute the

color variability score which is small if there are only a few
colors in the nontext regions of the image, and large if there
are many colors. In order to identify nontext regions we define
a text edge to be three consecutive pixels in either horizontal
or vertical direction such that their values are monotonically
increasing or decreasing and the absolute value of the difference
between the first and the third exceeds a threshold. We take the
threshold to be 100. A nontext region is any region that does
not contain any text edges.
The computation of the color variability score starts with

partitioning the image into 8×8 blocks, detecting nontext blocks,
and computing the mean R, G, and B values for every nontext
block. We then construct 256-bin R, G, and B histograms of
these mean values taken from all nontext blocks and count the
largest number of nonzero bins among these three histograms.
This number is our color variability score. If it is low, every his-
togram has only a few nonzero entries, suggesting that non-text
regions in the image are cartoon-like. If this score is high, there
is at least one histogram with many nonzero bins, indicating the
presence of many colors in the image. In this case, copying in
the text mode would be inappropriate.
Finally, in order to classify an image, we set thresholds for

both the histogram flatness score and the color variability score,
based on the training data. We classify an image as text if both
scores are less than their corresponding thresholds. Otherwise,
we classify it as nontext, i.e., mix, picture, or photo.

3.3. Text/Mix vs. Picture/Photo Classifier

Photos and pictures contain natural scenes and no text. Our
strategy for distinguishing such images from mix and text doc-
uments is to detect text and other regions that do not look like
natural scenes.
We partition the image into 64 × 64 blocks and count the

number of text edges in each block. We use the same definition
for a text edge as in the previous section. The text edge count
for an image is then defined as the maximum text edge count
among all the 64× 64 blocks. A large text edge count suggests
that the image may be in the mix or text category.
In addition, we reuse histograms of the R, G, and B aver-

ages of 8×8 nontext blocks which, as described in the previous
section, have been computed for the text vs. nontext classifica-
tion task. As in the previous section, we extract the number of
nonzero bins for each of the three histograms. In addition, we
extract the k-spans for each of the three histograms, for three
values of k: k = M/8,M/4,M/2, whereM is the maximum
of the histogram over its first 230 bins. These twelve features
(the number of nonzero bins and the three k-spans for each of
the three histograms) form a feature vector. We estimate the
means of the feature vectors for the two classes from the train-
ing data, and we also estimate a common covariance matrix.
For any image whose feature vector is y, we then define the
unnaturalness score:

U = (mmix/text − mphoto/pic)
T ΣUy,

where mphoto/pic and mmix/text are the mean vectors for the
two classes, and ΣU is the common inverse covariance matrix.
The larger the score U , the more likely it is that the image is
not a photo or a picture.
Finally, in order to classify an image, we set thresholds for

both the edge count score and the unnaturalness score, based
on the training data. We classify the image as photo or pic-
ture if both scores are less than their corresponding thresholds.
Otherwise, we classify it as mix or text.

3.4. Picture vs. Photo Classifier

Pictures typically contain halftone noise. Smooth regions that
are near midtone are most affected by the halftone noise. We
use these regions to distinguish between a picture and a photo.
We partition an image into 8 × 8 blocks and define a block

b to be a midtone block if at least one of its mean R, G, and B
values is within some interval centered at 128. In our experi-
ments, we take this interval to be [80, 176]. The roughness S(b)
of a block b is then defined as follows. For a block that is not a
midtone block, S(b) is infinite. For a midtone block, S(b) is the
minimum of SR(b), SG(b), and SB(b) where SR(b) is the sum
of the absolute values of the first differences in the horizontal
and vertical directions within the block b for the red channel,
and SG(b) and SB(b) are defined analogously for the G and B
channels, respectively. We finally define the roughness of the
image as the minimum S(b) over all the blocks b.
We classify an image as photo if its roughness is below a

threshold, and we classify it as picture otherwise. The threshold
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Classification results
ground-truth color-text color-mix color-picture color-photo mono-text mono-mix mono-picture mono-photo
color-text 60% 40% - - - - - -
color-mix - 99% 1% - - - - -
color-picture - 66% 34% - - - - -
color-photo - 29% - 71% - - - -
mono-text 18% 4% - - 61% 17% - -
mono-mix 1% 11% - - 2% 83% 3% -
mono-picture 1% 4% 1% - - 66% 29% -
mono-photo - 1% - - - 41% - 58%

Table 1: Classification rates for the training suite. Harmful misclassifications are indicated in boldface.

4 6 8 10 12
50

100

150

200

250

Histogram Flatness Scores

C
ol

or
 V

ar
ia

bi
lit

y 
S

co
re

s

Text
Non−text

Fig. 4: Color text vs. nontext: final feature decision map. The decision bound-
ary (dashed lines) results in no harmful misclassifications of nontext into text.

is determined from training data.

4. EXPERIMENT RESULTS

We have a training suite containing 891 images with at least 100
images for each class. The ground-truth labels of all images in
the training suite are selected by hand. Since not all errors are
equally costly, some are considered benign and others harm-
ful. We accordingly select the decision thresholds discussed in
Section 3. For example, mislabeling a mono image as color is
acceptable whereas mislabeling a color image as mono is not.
By conservatively setting the decision thresholds, we are able
to correctly identify all color images in our dataset as color im-
ages.
Another example is illustrated in Figure 4. This is a 2-D fea-

ture decision plot of color-text vs. color-nontext classification.
The x-axis is the histogram flatness score and the y-axis is the
color variability score. All color nontext images are shown in
“X”s and color text images are shown in “O”s. Recall that we
classify a color image as color-text if both its histogram flatness
score and its color variability score are less than the correspond-
ing thresholds. Color-text misclassified as color-nontext is con-
sidered benign and the opposite way of misclassification is con-
sidered harmful. Therefore we choose two conservative thresh-
olds: 8 for the histogram flatness scores and 200 for the color
variability scores. The thresholds are shown by the dashed lines
in Figure 4. Note that there are no “X”s in the lower-left rect-

angle defined by the dashed lines—i.e., there are no harmful
misclassifications of nontext into text.
Table 1 summarizes the final classification results for all

eight modes. It contains the empirical conditional probabili-
ties P (classification result | ground truth) for the training suite.
Depending on the ground truth, accuracy ranges from 29% to
99%. These numbers are shown in the main diagonal of Table
1. We consider the accuracy to be satisfactory because only
very few images falls into harmful modes. These harmful mis-
classifications are indicated in boldface numbers in Table 1. All
other misclassification are considered benign.

5. CONCLUSIONS

We have introduced a real-time, strip-based, low-complexity
document page classification algorithm and used it as the mode
selector in the copy pipeline. The revised pipeline improves
copy quality, simplifies user interactions, and increases the copy
rate. The classification algorithm analyzes the scan image and
classifies it into one of eight classes in the copy pipeline. Modes
are the combinations of mono/color and text/mix/picture/photo.
Mode classification is 29% to 99% accurate with misclassifica-
tions tending towards benign modes.
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