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ABSTRACT

This paper analyzes the use of text halftone modulation (THM)
as a text hardcopy watermarking method. Using THM, text charac-
ters in a document have their luminances modified from the standard
black to a gray level generated with a given halftone screen, accord-
ing to a message to be transmitted. The application of THM has
been discussed in [3, 6]. In this paper, a spectral metric is proposed
to detect the embedded message. Based on this metric, an error rate
analysis of halftone modulation is presented considering the effects
of the print and scan channel. Experiments validate the analysis and
the applicability of the method.

Index Terms— Watermarking, spectral detection, print-scan.

1. INTRODUCTION

Although telephony, video and Internet based communications have
increased remarkably in the last few years, communication over pa-
per is still an essential mean of conveying information. Very often,
important paper copies of documents are exchanged between com-
panies and people. As a consequence, the development of a reliable
method for authentication of hardcopy documents remains a critical
challenge.

As discussed in [3], a possible approach to text document au-
thentication is to consider text as a data structure consisting of sev-
eral modifiable features such as size, shape, position, luminance,
color, etc. These features can be modified, possibly unperceptually
to the human eye, according to a side message (or watermark mes-
sage) to be embedded in the document. Another useful method is
to embed information by modifying the characters using different
halftone matrices [8] according to the message, as illustrated in Fig.
2. This is referred to as text halftone modulation (THM) in this pa-
per. It was proposed in [3] and [6], where the authors claim that it
has a superior performance in comparison to simple text luminance
modulation (TLM) [3, 4], illustrated in Fig. 1. In contrast to TLM,
where the character average luminance is used to detect a modified
character, in THM a spectral analysis of the character is performed
to detect the halftone patterns.

Based on the THM method, the contributions of this paper are
manifold. (i) To detect the embedded halftone screen, the energy of
the sub-bands of the power spectral density (PSD) of a modulated
character is used. (ii) The detection error rate using this detection
metric is analyzed, considering a print and scan (PS) channel model.
(iii) The information of each subband of the received character is
combined according to the Bayes classifier [5], to achieve a reduced
error rate. (iv) Experiments are provided to illustrate the validity of
the analyses and the applicability of the method.

∗This author is supported by CNPq, Proc. No 202288/2006-4.

This paper is organized as follows. Sec. 2 briefly discusses
halftoning algorithms and describes a PS model. Sec. 3 outlines
the TLM and THM techniques. Sec. 4 proposes a detection metric
based on the PSD and analyzes the performance of this metric. To
illustrate the validity of the proposed model and the applicability of
the method, selected experimental results are presented in Sec. 5.
The paper closes with relevant conclusions in Sec. 6.

2. THE PRINT AND SCAN CHANNEL

2.1. The Halftoning Process

This section describes the halftoning process, which occurs prior to
printing. This description is focused on ordered dithering halftoning.

Let s be a digital image of size M × N with L + 1 levels in
the range [0,1], where 0 represents white and 1 represents black.
A halftoned image (binary) b is generated from s, using the ordered
dithering halftoning algorithm. The output of this method depends
on the size and on the coefficients of the dithering matrix D of size
J×J , where each coefficient represents a threshold level and the co-
efficient values in D are approximately uniformly distributed. Each
coefficient takes a value from the set {0, 1/L, 2/L, . . . , 1}. The bi-
nary output image b is given by an element-by-element thresholding
operation between the pixels in s and the coefficients in D. In gen-
eral, J � M and J � N . The input-output relationship of ordered
dithering can be mathematically described by:

b(m,n) =

{
0 if s(m,n) < D(mmodJ, nmodJ)

1 otherwise
(1)

where the output ‘0’ represents a white pixel (do not print a dot), and
‘1’ represents a black pixel (print a dot). Clearly, the coefficients in
D have a direct effect on the quality of the halftone image. Two
common eye-pleasing dither matrices structures are those based on
green- and blue-noise halftoning models [8]. Green noise models
produce an output formed mostly of midfrequencies spectral com-
ponents. Blue noise models produce an output formed mostly of
high-frequency components. These two kinds of halftoning models
are applied in this paper for text watermarking.

2.2. A Print and Scan Channel

Analytical models of the PS channel have been presented in the lit-
erature [1, 2, 4]. In addition to the geometric distortions (possible
rotation, re-scaling, and cropping), PS models assume that the pro-
cess can be modeled by low-pass filtering, the addition of Gaussian
noise, and non-linear gains, such as brightness and gamma alter-
ation. In the following a modified PS channel model is described,
which includes the halftone signal.
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The digital scanned image y is represented by

y(m,n) = gs

{{
gpr[b(m, n)] + η1(m, n)

}∗
∗ hps(m,n)

}
+ η3(m, n),

(2)

where b is the halftoned image generated from the original image s,
as described in (1). η1 represents printing noise due to microscopic
ink and paper imperfections. The noise η3 combines illumination
and CCD electronic noise [1], as well as the quantization noise due
to A/D. The operator ∗ represents convolution and the linear system
hps is a low-pass filter combining the point-spread functions of the
printer and of the scanner. In the printing process, blurring occurs
due to toner or ink spread. In the scanning process, the low-pass
effect is due to the optics and the motion blur caused by the interac-
tions between adjacent CCD arrays elements [1].

The term gpr(·) in (2) represents a gain in the printing pro-
cess. In practice, when toner or black ink particles are applied over
the paper, they do not present a null reflectance, causing a lumi-
nance gain to the printed image. This distortion is described by
gpr(m,n) = α(m, n)b(m, n), where α is a gain affecting the black
elements of b. α is modeled as constant for a small region (an
area corresponding to a full character, for example), but it does vary
throughout a full page due to non-constant printer toner distribution.

The term gs(·) represents the response of scanners, which vary
depending on the device. They may cause a non-linear gain to the
scanned image, represented by gs(m,n) = [x(m,n)]φ as reported
in results presented in [1].

3. DESCRIPTION OF TLM AND THM

Using TLM and THM, each character in the original digital docu-
ment is labeled as ci, i = 1, 2, . . . , K, where K is the total number
of elements. The elements are labeled from left to right, and from
top to bottom.

In TLM, information is embedded by individually altering the
luminance of ci through an embedding function where each charac-
ter has its luminance modulated from black to any value in the real-
valued discrete alphabet Ω = {ω1, ω2, . . . , ωS} of cardinality S, so
that each symbol conveys log2S bits of information. Considering a
spatial coordinate system for each character, indexed by coordinates
(m,n), ci(m,n) is modulated by a gain wi, wi ∈ Ω. Assume that
ci(m, n) ∈ {0, 1} and wi ∈ [0, 1], the modified luminance pixels
are in the range [0, 1], from white (level 0) to black (level 1). The
general embedding function is given by:

si(m,n) = wici(m, n) (3)

where si is the output element. The process is illustrated in Fig. 1
for S = 2, with a very high gain.

Fig. 1: Example of text watermarking through TLM.

In contrast to TLM, THM modifies the characters with specific
halftone matrices, as illustrated in Fig. 2.

Fig. 2: Exaggerate illustration of different halftone patterns.

4. SPECTRAL DETECTION

4.1. Statistical and Distortion Assumptions

Using TLM, text characters have their luminances modified to con-
vey information. The printed version of the modified characters can
be halftoned with different matrices D. Characters of equivalent
luminances printed using different D’s present the same average lu-
minance after printing, however the spectral characteristics are sig-
nificantly different.

In the model in (2), it is possible to decompose b into a constant
term b̄ plus a noise term η2, such that b(n) = b̄ + η2(n). Different
dithering matrices D cause different spectral characteristics to the
noise η2. Dither matrices coefficients can be set [9] to output a pat-
tern with blue-noise or green-noise [8] characteristics, for example.
In order to detect spectral differences, assume that η2 = ηb ∗ hD

where ηb is a white-noise pattern and hD represents a filter with the
frequency characteristics of the desired halftone.

Due to the low perceptual impact requirement of watermarking,
the detector operates in a small range of the luminance range [0, 1].
For this reason, gs in (2) can be approximated to a linear model [1]
and φ in gs is approximated to 1 for simplicity. Assuming that b is
generated from a constant gray level region, that is, s(n) = s0 = b̄,
where s0 is the average luminance of the modulated character prior
to printing, (2) can be written as (using a one-dimension notation)

y(n) =
{
α[s0 + η2(n)] + η1(n)

} ∗ hps(n) + η3(n), (4)

The term α represents a gain (see gpr in (2)) that varies slightly
throughout a full page due to non-uniform printer toner distribution.
Due to its slow rate of change, α is modeled as constant in n but it
varies with each realization i satisfying α ∼ N (μα, σ2

α), where i
represents the i−th character in TLM watermarking.

Due to the nature of the noise (discussed in Section 2) and based
on experimental observations, η1 and η3 can be generally modeled
as zero-mean mutually independent Gaussian noise [1, 2].

4.2. Proposed Spectral Detection Metric

With the assumptions above, a possible detection metric to classify
a given character is to use sub-band spectral features. For this task,
the PSD of a scanned character y(n) of size N is divided into L
subbands of sizeW , whereW = N/L. The average power of each
of these subbands represents one among L features.

Let the average power of l-th sub-band be given by

dl =
1

W

lW−1∑
w=W (l−1)

|Y (w)|2 (5)

where |Yi(w)|2 = Yi(w)Y �
i (w) represents the squared PSD of

y(n), where the operator � denotes complex conjugate and Y (w)
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is

Y (w) =
1√
N

N−1∑
n=0

y(n)e−j2πnw/N =
1√
N

N−1∑
n=0

{{
α[s0 + η2(n)]

+ η1(n)
} ∗ hps(n) + η3(n)

}
e−j2πnw/N

(6)

To determine to which class the received vector y(n) belongs, the
average power of each sub-band l is used as a feature. Therefore, the
feature classification vector is given by d = [d1 d2 . . . dL]T .

The expected value μdl
of a feature dl is given by:

μdl
= E{dl} = E

{
1

W

lW−1∑
w=W (l−1)

|Y (w)|2
}

= E

{
1

W

lW−1∑
w=W (l−1)

1

(N2)

N−1∑
n=0

{
αs0 ∗ hps(n) + αη2(n) ∗ hps(n)

+ η1(n) ∗ hps(n) + η3(n)
}
e−j2πnw/N

N−1∑
m=0

{
αs0 ∗ hps(n)

+ αη2(n) ∗ hps(n) + η1(n) ∗ hps(n) + η3(n)
}
ej2πnw/N

}
(7)

Considering the statistical characteristics (zero-mean, mutually
independent) assumed for the noise terms in (4), the cross terms are
canceled and the expected value in (7) becomes

μdl
=

1

W

lW−1∑
w=W (l−1)

α2s2
0Hps(w)H∗

ps(w)δ(w)/N

+ α2Hps(w)H∗

ps(w)σ2
η2

+ Hps(w)H∗

ps(w)σ2
η1

+ σ2
η3

(8)

where δ(·) is the unit impulse function. Similarly, a statistical anal-
ysis shows that, when N is large, the variance σ2

dl
= E{d2

l } − μ2
dl

of a feature dl can be approximated to:

σ2
dl

=
1

W 2

lW−1∑
w=W (l−1)

lW−1∑
v=W (l−1)

3σ4
η2

(3σ4
α + 6σ2

αμ2
α + μ4

α)

|Hps(w)|2|Hps(v)|2 + 3σ4
η1

(σ2
α + μ2

α)|Hps(w)|2|Hps(v)|2

+ 3σ4
η3

− μ2
dl

(9)

Assuming that dl is normally distributed, from μdl
and σ2

dl
the the-

oretical detection error rates are determined, presented in Sec. 5.3.

4.3. Combining Metrics

To reduce the detection error rate, all the sub-band features dl (l =
1, . . . , L) are combined. For this, the Bayes classifier [5] is used be-
cause of its optimality properties for normally distributed features,
which is the case assumed. Moreover, it is possible to combine other
detection metrics (spectral or statistical), with the spectral metric
proposed in this paper. Although different metrics may have better
performance than others, because both the spectral and the statisti-
cal metrics are useful to separate classes, combining them increases
the distance between classes, and consequently reduces the detection
error rate [5], at the expense of increasing computational complexity.

5. EXPERIMENTS

The purpose of this section is to illustrate through Monte Carlo sim-
ulations the applicability of THM and the reduced error rate when
using the Bayes classifier, as well as to validate the analyses of Sec-
tion 4 and the proposed PS channel model. In addition, comparative
results with TLM are presented.

During the experiments, the noise and the distortion parameters
of the PS channel vary depending on the printing and scanning de-
vices used. The printing and scanning resolutions were set to 300
dots/inch and pixels/inch, respectively. The experiments are con-
ducted with printers HP IJ-855C, HP IJ-870Cxi and HP LJ-1100,
and scanners Genius HR6X, HP 2300C and HP SJ-5P. Typical values
for the parameters in (2) are ση1

= 0.018, ση3
= 0.01, μα = 0.8,

σα = 3.
To model the low-pass effect of the PS channel represented by

hps in (2), the filter described in [4] is used in this paper, which is a
Butterworth filter of order 1 and cut-off frequency equal to 0.17. Us-
ing the noise, gain and blurring filter parameters described above, a
character distorted with the proposed PS model is perceptually sim-
ilar to an actual printed and scanned character.

5.1. Experiment 1: Blue Noise Halftoning

Consider the 1 bit/element case (S = 2). A large sequence of
K = 32520 characters (as in ’abcdef...’ ) is printed, with font
type ‘Arial’, size 13 points. In the experiments small text elements
such as commas and dots are not watermarked. Because these ele-
ments are composed by a smaller number of pixels, they are more
susceptible to segmentation and detection errors.

Prior to printing, the character sequence was modulated with a
gainwi = 1 (no luminance alteration) for odd i, i = 1, 3, . . . , K−1,
and with a gain wi = 0.84 for even i, i = 2, 4, . . . , K, using a
blue noise dithering matrix D. Using these values, empirical tests
indicate that it is hard for a human observer to distinguish between a
modulated and a non-modulated character.

The elements with no luminance alteration (wi = 1) have white-
noise characteristics and carry bit 0, and the elements modulated
with wi = 0.84 have blue noise characteristics and carry bit 1. The
task is to classify each printed character as having a bit 0 or bit 1
embedded into it.

To retrieve the embedded information, the document is scanned
and the text is segmented from the background using simple thresh-
olding.Segmentation errors are not observed in this set of tests, how-
ever it is clear that they may cause synchronization detection errors.
The use of channel coding is an efficient option to reduce the bit
errors caused by wrong segmentation [7].

To determine the bit value inserted in each element of the scanned
document, three distinct approaches are tested:

1. Detection using one sub-band feature: The resulting detec-
tion distributions using the low and the high bands energies
separately as detection metrics are given in Figs. 3(a) and
3(b) respectively.

2. Detection using two sub-band features: The resulting de-
tection distribution combining the low and the high bands en-
ergies with the Bayes classifier is given in Fig. 3(c).

3. Detection using three sub-band features: The resulting de-
tection distribution combining the low, the mid and the high
bands energies with the Bayes classifier is given in Fig. 3(d)

Table 1 presents the observed error rates for the three cases dis-
cussed above. Notice the reduced error rate when more metrics are
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(a) Histogram of the low-band as a
detection metric.
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(b) Histogram of the high-band as a
detection metric.
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(c) Scattered plot illustrating the low
and high bands for blue noise.
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(d) 3-D plot illustrating the low, mid-
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Fig. 3: Detection distributions using one, two and three metrics.

Table 1: Experimental error rates for THM and TLM.
Freq. Band Blue Noise Green Noise
Low 9.66 × 10−3 1.03 × 10−2

High 4.66 × 10−3 7.48 × 10−3

Comb. Low-High 1.12 × 10−3 2.14 × 10−3

Comb. Low-Mid-High 7.80 × 10−4 9.96 × 10−4

Average Lum.(TLM) 1.05 × 10−2 1.07 × 10−2

included in the detection process. This table also presents the error
rates using only the average luminance as a detection metric (TLM),
which presents a higher error rate than the spectral detection.

5.2. Experiment 2: Green Noise Halftoning

This experiment is similar to Experiment 1, however green noise
halftoning is employed in the printing process. Table 1 presents the
observed error rates. Notice that blue noise presents a smaller error
rate in comparison to green noise. This occurs because when blue
noise (with strong high frequencies) and green noise (with strong
mid frequencies) are passed through the PS channel, blue noise is
more distinguishable from white noise, which corresponds to the
non-modulated case.

5.3. Experiment 3

In this experiment a Monte Carlo simulation is performed to observe
the error rates when using the proposed PS channel model of Section
2. The goal of this experiment is to validate the analyses of Section
4 for the synthetic PS channel, which emulates the actual PS pro-
cess. Therefore, in this experiment, instead of printing and scanning
the modulated symbols, they are transmitted through the assumed
model. Tests are performed with blue and green noise halftoning,
for wi = 0.98, 0.96, 0.92, 0.88, and 0.84, i = 2, 4, . . . , K. In this
experiment,K = 500000.

The curves in Fig. 4 represent the theoretical error rates plotted
from the results of Sec. 4 for blue and green noise halftoning, as

0.85 0.9 0.95 1
10−4

10−3

10−2

10−1

100

Blue − Theoretical
Blue − Experimental
Green − Theoretical
Green Experimental

Fig. 4: Error probability for different gains, using blue and green
noise halftoning to modulate the characters.

indicated by the legend. The triangles and the black dots represent
the observed experimental error rates, presenting an excellent corre-
spondence to the theoretical curves. This validates the analyses of
Sec. 4 and illustrates that once the noise parameters of PS devices
are obtained, the performance of the system can be predicted.

6. CONCLUSIONS

This paper proposes and analyzes a new detection approach to THM,
a text hardcopy watermarking method. Blue and green noise halfton-
ing patterns are employed in the printing process to modify text char-
acters and consequently embed a watermark in a document. The pro-
posed detection observes the spectral characteristics of the received
character. Considering a PS channel, the theoretical detection error
rates are determined, and the experimental results illustrate a good
correspondence between theory and practice. The experiments and
the analyses have illustrated that THM presents a smaller error rate
than TLM, making it a practical alternative for document authenti-
cation. It is important to notice that it is possible to combine THM
with other text watermarking methods [3].
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