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ABSTRACT
Markov Random Field (MRF) based sampling method is pop-
ular for synthesizing natural textures. The main drawback of
the synthesis procedure is the large computational complexity
involved. In this paper, we propose an approximation of the
conditional density description for the reduction of computa-
tional complexity required in sampling texture pixels from the
conditional density. Assuming, Y ∈ Λ, and X ∈ Λd, we in
this work studied the approximation of the conditional den-
sity function P (Y |X) as P (Y |θtX), where θ ∈ �d, is a unit
vector. We have also shown that the classical gradient based
optimization method is not suitable for finding the solution of
θ. We have estimated θ using Genetic algorithm. The per-
ceptual (visual) similartiy and neighborhood similarity mea-
sures between the textures synthesized using the full condi-
tional description and approximated description, are shown
for validating the method developed.

Index Terms— Texture synthesis, MRF, Genetic Alror-
ithm, Quasi-Newton, approximation of conditional density

1. INTRODUCTION

Texture synthesis by MRF from a given sample of natural tex-
ture is known to be a time consuming task. The problem
has been addressed in [1], and [2], through the reduction of
the search space. But, if the dimension of the neighborhood
(which is 360 for order 10 and in most cases requires order
≥ 10 for synthesizing natural textures) is not reduced, then
the comparison of a huge neighborhood vector at each pixel
site in the output synthesized texture, with neighborhood vec-
tors at each pixel site from the input sample texture done sev-
eral times. This is a computationally inefficient process as
can be seen from figure (1). The exponential growth in the
computational complexity with the increase in neighborhood
order is a matter of concern. If we can approximate the condi-
tional density through a reduced number of random variables,
then it is possible to increase the speed of the synthesis pro-
cess and other related approaches. The procedures, such as
PCA, ICA and the nonlinear kernel versions of these concepts
can not be applied in the straightforwardmanner here because
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Fig. 1. (a) Explains the reduction of computational complexity of proposed
algorithm with respect to old algorithms, In the second row: The textures
synthesised with the (b) full conditional density, and (c) approximated condi-
tional density with the minimized computational complexity, are compared,
where original texture taken as D1 from the Brodatz album and MRF order
= 10

our objective is to approximate the conditional density and not
the joint density of the spatial data.
In this paper we have tried to approximate the conditional

density through a linear transformation of the neighborhood
vector to a one dimensional random variable. This intuitive
idea can be deduced from the fact that due to the Markovian
nature, the neighborhood pixels are also dependent on each
other and a linear transform could capture this dependency in
a way such that the conditional density has not been compro-
mised. Our contribution lies in the design and analysis of the
approximation method for the specific application in texture
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synthesis through nonparametric Markov random field.
In section 2 we review the preliminary concepts required

for further discussion. In section 3 we discuss the approxima-
tion strategy for the specific problem. Finally in section 4 we
discuss the results obtained through the proposed algorithm,
and finally conclude the paper in section 5.

2. MRF PRELIMINARIES IN TEXTURE SYNTHESIS

2.1. Nonparametric MRF preliminaries

MRF models have been used for different applications in dif-
ferent branches of science and engineering. In the present
case, description of MRF is taken from the view point of lat-
tice models. The lattice, X, is a collection of random vari-
ables (r.v. henceforth) at the sites, s = {i, j} ∈ S, where,
i, j = 0, 1, . . . , M − 1. The random variables are described
as Xs ∈ Λ, i.e., they belong to the same state space. The
MRF assumption implies

p
(
Xs = xs|X(s)

)
= p (Xs = xs|Xs = {xr; r ∈ ℵs})

, which describes the fact that given a neighbor set, ℵs,
the r.v. at s is independent of all other sites, (s) = S − s and
this conditional probability is termed as local conditional pdf
(LCPDF). The neighborhood system is defined with the help
of two axioms, s /∈ ℵs, and, s ∈ ℵr ⇔ r ∈ ℵs. Let us now
consider the nonparametricMRF model as described in [3] in
the context of texture synthesis. Assume, Sin and Sout signify
the input and output texture lattices respectively, and for sim-
plicity we also assume thatXs denote the neighborhood set of
the pixel r.v. Ys. For each pixel in the output lattice, s ∈ Sout,
we estimate the LCPDF P (Ys|Xs), for Ys = 1, 2, . . . , L from
the data {Xp, Yp} where, p ∈ Sin. This is generated from
the input texture through Parzen window estimator using the
product kernels as,

P (ys|Xs) =
P

p
κhy (ys−yp)

Qd
j=1

κhj
(Xsj

−Xpj
)

P
p∈Sin

Q
d
j=1

κhj
(Xsj

−Xpj
)

Here, κh(Z) = exp
(
−Z2/2h2

)
/(2π)1/2 is the Gaussian

kernel function,Z ∈ �, and hz = σz (4/(n(2d + 1)))
1/(d+4),

is the bandwidth as described in [3], ∀p ∈ Sin, and ∀s ∈ Sout.
In the following a brief description of the sampling process
from the nonparametric conditional density, as described in
[3], is given. Choose a new ys, by sampling the estimated
LCPDF, through either Gibbs sampler or ICM algorithm. We
will first describe a simple algorithm to increase the speed of
this sampling algorithm, that has been actually used by Rupert
Paget in [4]. Generate a vectorW according to the following
equation, and then sample ys, s ∈ Sout, from this constructed
vector according to a uniform distribution.

W = {yk; d(Xi, Xk) ≤ d(Xi, Xp), ∀p ∈ Sin}
In the algorithm described in [4], one has to calculate only

the distance between two neighborhood vectors from input
and output textures and then sampling the output pixel value
from the generated vector W . The distance calculation be-
tween two high-dimensional (generally more than 100 and

can go upto 1000 or more), neighborhood vectorsXp andXs,
is extremely time consuming.

3. APPROXIMATION OF CONDITIONAL DENSITY

The idea of approximating conditional density is conceived
from [5]. In [5], authors described the approximation through
cumulative distribution function. In this paper, we have mod-
ified the approximation through density functions, according
to the requirement of texture synthesis.
Let Θ be a set of d-variate unit vectors θ, f(X) the den-

sity function of X ∈ Λd, where Λ is the set of gray levels
(here, neighborhood vector). FY |θT X(Y |Z) is the conditional
distribution function of Y given Z , and f(Y |Z) is the condi-
tional density function of Y , given Z = θT X . Given subsets
A and B of d-dimensional space and of the real line, respec-
tively, define

πθ (A, B) =
∫

A
FY |θT X(B|θT x)f(x)dx

π(A, B) = P (X ∈ A, Y ∈ B)
The cost function or the objective function defined as in

[5], is,
S1(θ) =

∫ ∫
{π̂θ(Aα, Bβ) − π̂(Aα, Bβ)}

2
w(α, β)dαdβ

where, w is a weight function and the integral is taken
over a parameterization (α, β) of (A, B), and π̂θ and π̂ are the
nonparametric estimators of πθ and π respectively. Since, we
are only interested in sampling the LCPDF, we have used the
second definition of the cost function, as described in equation
(1). This cost function eq. (1) is compuationally less complex
compared to the earlier cost function and it is dependent upon
the conditional density functions. In the next subsections we
describe an intuitive procedure for the estimation of θ, given
the sets Yj andXj , where, j = 1, . . . , n, and n = |Sin|.

S2(θ) =

n∑
i=1

256∑
j=1

{
p(yj |Xi) − p(yj |θ

T Xi)
}2 (1)

3.1. Problem with classical optimization methodology

In classical optimizationmethodologywe need to assume some
properties of the set of variables and the corresponding objec-
tive function. The set,Θ, has to be a convex set, i.e., if θ1 and
θ2 both belongs to Θ, it implies that, {αθ1 + (1 − α)θ2} ∈
Θ. Again, from the definition of the Θ, we can say that,
||θ|| = 1 ↔ θ ∈ Θ. But, it can be shown that, ||αθ1 + (1 −
α)θ2|| 
= 1, which implies that, {αθ1 + (1 − α)θ2} /∈ Θ.
Therefore,Θ is not a convex set. Let us assume,

A
′

pk
=

∑n
m=1 CipkmĈim, for k = 1, 2,

A
′

=
∑n

m=1 DjmĈim, A
′′

=
∑n

m=1 Ĉim,
A

′′

pk
=

∑n
m=1 DjmCipkmĈim, for k = 1, 2,

A
′

p1p2
=

∑n
m=1 DjmCip1mCip2mĈim

A
′′

p1p2
=

∑n
m=1 Cip1mCip2mĈim

Ĉim = exp
{
−

∑d
k=1 θ2

kCikm

}
, Cikm = (xik−xmk)2

2h2 ,
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C =
2θp1

θp2

πh2(A′′ )4
, Djm = exp

{
−

(yj−ym)2

2h2

}
, and

D1 =
[
3A

′

p2
A

′

p1
(A

′

)2 + A
′′

p2
A

′′

p1
(A

′′

)2
]

D2 =
[
2A

′

p1
A

′′

p2
+ 2A

′′

p1
A

′

p2

]
,D3 =

[
A

′′

p1p2
A

′

− A
′

p1p2
A

′′

]
D4 = 1

2θp

[
−(A

′′

)2A
′

pA
1 + (A

′′

)3A
′′

p

]
Therefore, the Hessian matrix for the cost function in eq.

(1) can be written as,

H{p1,p2;p1 �=p2} = CD1 − CA
′

A
′′

(D2 + D3) (2)

H{p1,p2;p1=p2=p} = CD1 − CA
′

A
′′

(D2 + D3) − CD4 (3)

Now, it can be shown that if the following conditions are sat-
isfied then the Hessian matrix will be rank deficient. The first
condition is that the random variables at the neighborehood
sites become linearly dependent, and the second is that the
probability of the random vector Xi is approximately zero,
or, A

′′

A
′′

p = A
′

pA
′

, or, θp = 0. As the conditions described
above are most likely to satisfy, therefore, we have to think of
other alternatives than the classical gradient based optimiza-
tion method.

3.2. Genetic Algorithm based methodology

In this work we redefine the cost function mainly because of
two reasons. The first reason would be the reduction of the
computational cost for evaluating the Parzen window estima-
tion of the LCPDF’s P (Yi|Xi) and P (Yi|θ

T Xi). Since we
use the algorithm in [4], we have to modify our cost function
according to it. In genetic algorithms one only needs to have
some performance evaluation function between two samples
of θ. Hence, we can easily modify the cost function accord-
ing to the current requirement. In case of texture synthesis
we use the algorithm described in [4], where we only need to
perform the comparison between two neighborhood vectors
and choose the Yj corresponding to the minimum distance.
Therefore, the new definition of the cost function would be,

S3(θ) =
M∑
i=1

(
Wi − Ŵi

)T (
Wi − Ŵi

)
(4)

where,Wi = {Yk; d(Xi, Xk) ≤ d(Xi, Xm), ∀m}, and, Ŵi =
{Yk; d(Zi, Zk) ≤ d(Zi, Zm), ∀m}. In equation (4) we have
considered M number of evaluations of the inner products,
i.e., we have generatedM random vectors Xi, i = 1, . . . , M
for the test problem. The genetic algorithm approach that we
have considered, is described in [6].

4. RESULTS

For the evaluation of equation (4) we have generated M =
(d × 100) random vectors. In our implementation we have
kept the parameters required in GA implementation, the same
for each case. The number of population members that we

have considered is 8 and the number of generations is 40.
From our experience we can say that, considering the time
factor and computational cost requirement, the parameters
chosen are reasonably adequate as the value of the objective
function in each case attain a zero value, i.e., the solutions are
at global minimum points. The other parameters required for
the algorithm are assigned their default values. The results
are shown in figure (3).
The perceptual (visual) similarity between the synthesized

textures with the FCD (Full Conditional Density) and ACD
(ApproximatedConditional Density), for all types of textures,
give us the confidence about the validity of the proposedmethod.
For performance evaluation we have calculated the neighbor-
hood similarity measure between the original texture sam-
ple and the synthesized one. This is defined as, the sum of
(dij ; s.t., j ∈ Sin, i ∈ Sout, and dij ≤ dik, k ∈ Sin),
where, dij = ||ℵi − ℵj ||

2, and ℵi is the neighborhood of the
ith pixel in some lattice. Let us define a comparitive mea-
sure between the synthesized textures (one with FCD and
another with ACD) with respect to the original texture as,
dorig,FCD − dorig,ACD normalized by dorig,FCD, i.e., the
change of neighborhood similarity measure with respect to
the original texture when we consider the approximated con-
ditional density. Figure (2) describes this measure for a num-
ber of different textures and order informations.From the fig-
ure it is clear that the change is very small, (of the order of
0.04).
The comparison between the computational complexities

can be stated mathematically. If we considerM as the number
of pixel sampling for each texture synthesis, Q as the num-
ber of pixels in the input texture sample, and K the order of
the MRF. Then the computational complexity for the old ([4])
algorithm would be,MK log(Q), and for the proposed algo-
rithm it is, (MK +log(Q)K +M). As,Q is fixed for a given
input texture;M has to be atleast equal to the number of pix-
els in the output texture (to sample each pixel atleast once).
If we take Q = 128 × 128, M = 256 × 256, and vary K ,
we obtain the plot shown in figure (1). From the compari-
son plots shown in the figure (1), it is clear that the reduction
of the computational cost is large, with no significant percep-
tual error (figure (3)) or mathematical error (figure (2)), in the
output.

5. CONCLUSION

We have proposed and analysed a new method for the ap-
proximation of conditional density through a transformation
of the conditional random vector to a single random variable.
The approach has been modified for the specific application
in texture synthesis through the sampling of the conditional
density. The results obtained show promise for the validation
of the approach, though there is no theoretical justification of
the approximation method at present. The estimation of the
unit vector is a time consuming process and computationally
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expensive. But, once θ is estimated for a particular sample
of texture, it can synthesise the texture a number of times,
(say on a 3D surface) in a much more faster way compared
to the conventional sampling approaches. In this paper we
have taken another approximation into consideration, due to
an important ingredient of the texture synthesis algorithm [4],
that is local simulated annealing. The future direction of our
research will be to find an algorithm for the incorporation of
local simulated annealing within the approximation of condi-
tional density, otherwise we will not able to get the reduction
in computational complexity, in practice.

Fig. 2.
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Fig. 3. (a) The original synthesized texture (b) The approxi-
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