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ABSTRACT

The accurate modelling of the human visual system, par-
ticularly of the retina, would be a great achievement and a big
step in the development of visual prostheses. Several meth-
ods and algorithms have been proposed to accomplish such
a difficult task, mainly to what concerns the adaptation and
nonlinear mechanisms of the retina.

This paper presents the results obtained by the employ-
ment of additive logistic regression techniques to model the
nonlinear block of a canonical Linear-Nonlinear-Poisson retina
model, considering the spike triggering process from a statis-
tical point of view, complemented with the PCA of the stim-
uli covariance matrix. The displayed results were obtained by
modelling real retina data using different forms for the non-
linear block and are assessed with different error measures.

Index Terms— Retina Model; Spike-Triggered Analysis;
Nonlinear Functionals; Additive Models

1. INTRODUCTION

The human visual system has been a challenging matter
of study among researchers. Many different approaches have
been used towards retina modelling, mainly adopting spike-
triggered analysis [1], information-theoretic approach [2] and
maximum-likelihood estimation [3].

The retina is composed by several cells layers, with intrin-
sic connections between different layers [4], that can be indi-
vidually modeled. A common retina model architecture that
has became very popular among researchers and is already
considered a state-of-the-art model, is the Linear-NonLinear-
Poisson (LNP) model depicted in fig. 1, that models the retina
as a whole.

By applying spike-triggered analysis, it is possible to ex-
tract several linear components from the stimuli that are rele-
vant for the retina. Spike-triggered average and spike-triggered
covariance combined with principal component analysis, has
proven to be quite efficient for that purpose [5]. The Poisson
block in the LNP model is responsible for generating spikes,
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given a time-varying probability of a spike being fired, known
as firing rate. The most challenging part of this model is
its nonlinear characteristics. The idea behind it is that the
probability of a spike being elicited is a nonlinear functional
of the linear components of the stimuli. The methods pro-
posed so far to model the nonlinearity consists in estimating
the firing rate from a set of trials of a single experiment, and
then fit a nonlinear function if there is only one linear compo-
nent [1]. For more than one linear component the most com-
mon method is to compute the ratio between the histogram of
the input subset that elicited a spike and the input histogram,
defining a multi-dimensional functional [5]. The problem is
that to populate sufficiently a n-dimensional histogram, the
amount of data needed grows exponentially with the number
of linear kernels.
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Fig. 1. Linear-NonLinear-Poisson (LNP) Model

To overcome this difficulty, we propose in this paper the
use of Generalized Additive Models to estimate the nonlinear
functional. The firing rate can be interpreted as a probability,
and for that reason, logistic regression methods are suitable
to model it. However, since the retina shows highly nonlinear
features in its response, the use of a more general form of this
regression is proposed: the additive logistic regression. Its
use is valid if the spike trains are sampled with a small time
period so that there is, at most, one spike per time bin whose
presence, or not, can be represented by a Bernoulli random
variable. Experimental results show that the use of additive
logistic regression allows to properly model the nonlinearity
in the LNP like retina models.

2. GENERALIZED ADDITIVE MODELS

In the retina response, the output spike train ρ can be seen
as a sequence of events of two classes, where at time instant
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i it can take one of two values, ρi = 1 if a spike is trig-
gered or ρi = 0 otherwise. Statistically speaking, we wish to
model the probability of a spike occurring P (ρi = 1|Xij) =
λi, given the stimulus projection on the d linear components,
Xij , with 1 ≤ j ≤ d.

The logistic regression makes no assumption about the
distribution of the independent variables: they do not have
to be normally distributed, linearly related or to have equal
variance within each group [6]. In logistic regression the re-
lationship between the predictor and response variables is not
a linear function, instead it uses the logit transformation of λi.
The linear logistic model assumes that the log-odds are linear,
while the additive logistic replaces each linear term by a more
general functional of the form

ln
(

λi

1 − λi

)
= α +

d∑
j=1

fj(Xij), (1)

where d is the linear space dimension and each fj is a general
function like a cubic spline or a polynomial.

The adjustment of the additive logistic model can be done
by applying the local scoring algorithm, that starts to com-
pute an initial guess of λi, which is obtained by initializing

f̂j ≡ 0, ∀j and α̂ as

α̂ = ln
(

ρ

1 − ρ

)
, (2)

where ρ is the spike count average over time. Then, the re-
gression target variable Yi is written as

Yi = α̂ +
d∑

j=1

f̂j(Xij) +
(ρi − λi)
λi(1 − λi)

(3)

Constructing the regression weights wi = λi(1 − λi) and
fitting the additive model to the targets Yi with a weighted
backfitting algorithm, new estimates are achieved for α̂, f̂j ,∀j.
An iterative procedure for the additive logistic regression is
achieved [7] by computing equation 3 with the new estimated
values, until the functions changes fall bellow a threshold.

The weighted backfitting algorithm, used in the local scor-
ing algorithm, is a general algorithm that can fit an additive
model using any regression-type fitting mechanisms that sup-
ports weighting. It defines the jth set of partial residuals as

Rj = Y − α̂ −
∑
k �=j

f̂k(Xk) (4)

which provides a way for estimating each function fj given
an estimation for all the others:

fj ← Sj [Rj |X,w] (5)

where Sj is the fitting operator. This backfitting procedure
is analogous to a multiple regression for linear models. For
more details about these algorithms and to generalized addi-
tive models theory refer to [6].

3. MODELLING THE RETINA

After stimulating a spiking neuron with a sequence drawn
randomly from an ensemble, one can analyze the stimulus
subsets that elicit spikes. Spike-triggered analysis exploits
the fact that the spike-triggered stimulus ensemble can pro-
vide information about the neuron response characteristics.
This method has been successfully exploited in several retina
models [1] [5].

By considering s the raw stimulus ensemble, sspk is de-
fined as the subset of stimulus that triggered a spike. A sim-
ple operation to do over these blocks of stimuli is the spike-
triggered average (STA) which corresponds to the mean stim-
ulus that elicit a spike:

m =
1
N

N∑
i=1

sspk (6)

It was shown that m is an unbiased estimation of the linear
component of the LNP model as long as the stimulus distri-
bution is spherically symmetric [1].

However, a single linear filter will fail to describe complex
responses, and so the generalized version of the LNP model is
introduced. It includes a nonlinear combination of several lin-
ear responses instead of just one. To recover this set of linear
filters, more operations over sspk must be performed, such as
the 2nd order moment (covariance), which is the natural evo-
lution of the 1st order one (mean). The covariance matrix C
is defined as:

C =
1

N − 1

N∑
i=1

(sspk − m) · (sspk − m)T (7)

In order to identify the most significant kernels, a princi-
pal component analysis (PCA) is performed, looking for the
directions that suffered a significative change from the raw
stimulus ensemble to the spike triggered ensemble. Applying
this technique, known as spike-triggered covariance, it is pos-
sible to identify a set of orthogonal (eigen-)vectors that corre-
spond to: i) excitatory kernels, if the eigenvalues of the spike
triggered ensemble increases relatively to the raw stimulus en-
semble; and ii) suppressive kernels if it decreases, defining a
multi-dimensional linear stage [5].

Now all projections of the stimuli on each linear compo-
nent must be combined to obtain the probability of a spike
being generated at a given time instant. This is where the par-
ticular use of the generalized additive models is introduced
with the additive logistic regression: the log-odds of a spike
being elicited is given by the sum of the nonlinear transfor-
mation of the linear projections. In particular, the nonlinear
functions fj used in this paper are polynomial functions with
the form

fj(z) =
Q∑

c=1

βc · zc (8)

where the coefficients β of the polynomial of degree Q are
adjusted in a weighted least squares sense. The zero order co-
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efficients of each polynomial are imposed to be zero because
α in equation 1 can take the constant terms into account.

The model for spike generation is an inhomogeneous Pois-
son process, that assumes that the firing probability at any in-
stant of time depends only on the stimulus itself and not on
the past spikes. This means that the Poisson process rate is
simply λi, the probability of having a spike at time instant i.

The assumption that spikes are generated independently
is crude, as the refractoriness of the neuron affects the spike
generation. Thus, a new term ri was included to model the
refractory period, which depends on the elapsed time since
the last spike occurred, such that the Poisson process rate be-
comes ri · λi. The refractory term models the 3 states of the
neuron: (1) the refractory period which disables the cell from
generating any spikes (ri � 0), (2) the recovery from the re-
fractory period, where their ability to generate new spikes in-
creases with the time elapsed since last spike (ri rises towards
1), and (3) the neuron regular state, where the probability of
generating a spike only depends on λi (ri � 1). For more
details about spike generation mechanisms and how to model
the refractory term refer to [8].

4. RESULTS

The methods and algorithms proposed were implemented
and tested with the experimental data used in paper [9], con-
sisting of 12 trials of full field white noise stimulation for a
salamander ON cell, where each trial has a duration of 10
seconds with an average count of 8.34 spikes per second. The
data was split for training (60%) and testing (40%) purposes.

To compare two spike trains , the spike time metric pro-
posed in [10] is used dtime

q . This metric measures the dis-
tance between the spike trains ρa and ρb as the minimum cost
to transform the spike train ρa into ρb by the successive ap-
plication of a set of allowed elementary operations, namely:
insertion, or deletion, of an individual spike, both with unitary
cost per spike; and the time shift in the occurrence of a spike,
with a cost of q per time unit, resulting in cost of q|Δt| for a
time shift of Δt. In order to be comparable, the error values
are normalized by the spike train length.

The spike time metric evaluates the complete model, in-
cluding the spike generator, but since we are mainly focused
on the nonlinear block, its output must be evaluated too. For
that purpose, the normalized mean squared error (NMSE) was
used, which is defined as [8]

NMSE =
∑N

i=1 (λi − λ̂i)2∑N
i=1 (λi − 〈λ〉)2

(9)

The NMSE was computed for the estimated and observed
firing rates. The last can be extracted from the PeriStimulus
Time Histogram (PSTH) computed across several trials of the
same experiment [1].

The model performance was analyzed while varying the
number of linear components d and the polynomials order Q.
From the results in fig. 2, it can be observed that high or-
der polynomials are unnecessary, and in fact, they just lead to
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Fig. 2. Model evaluation with NMSE of train and test data
sets, varying the polynomials order Q and number of linear
components d
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Fig. 3. Comparison between the estimated and the observed
firing rate λi, for the train and test data sets (d = 5, Q = 3)
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Fig. 4. Additive Logistic model: The linear components of
the model are depicted along with the estimated nonlinear
functions
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overfit since the NMSE of the test data starts to increase from
Q = 2. Holding the polynomials order, and varying the num-
ber of linear components, the model performance has been
also analyzed. The first linear component, given by the STA
in equation 6, is the one that offers the most relevant informa-
tion, while in this case, the remaining linear components have
a small contribution to the train and test NMSE.

From the analysis above, a pair of Q and d was chosen
and the estimated firing rate was compared with the observed
one, in fig. 3. A polynomials order Q = 3 was applied and the
number of linear components was d = 5. Fig. 4 illustrates the
obtained additive logistic model, where both the linear and
nonlinear components are depicted. It provides information
about the contribution of each linear component, giving some
insight about the retina behavior when stimulated.

Linking the firing rate estimate to the Poisson spike gener-
ator, a set of spike trains was generated. Using the spike time
metric with q = 50/s, the spike trains were compared, within
each set of trials and cross-comparing them. The results in
table 1 resumes the model evaluation for the parameters cho-
sen, where the good relationship between the train and test
errors is numerically demonstrated. A framework to evaluate
different retina models [11] is now being developed to rela-
tively assess the obtained results. Finally, the estimated and
observed spike trains are depicted in fig. 5.

Train Data Test Data

NMSE 0.389 0.561
Observed trials 37.49 36.55

dtime
q=50s−1 Estimated trials 68.48 71.96

Cross-trial 75.32 80.65

Table 1. Error measures
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Fig. 5. Observed and estimated spike trains

5. CONCLUSIONS

We demonstrated how generalized additive models can be
used to model the retina by following a probabilistic point of
view of the retina neural code. In particular, additive logis-
tic regression was used to estimate the nonlinear functional of

the well known LNP model, proving to be a flexible statisti-
cal method to identify and characterize the nonlinear effects
existent in the neural code.

The proposed model provided a way to combine several
stimulus features, in a nonlinear form. It is easily extensible to
accommodate more severe nonlinearities just by changing the
number of linear components. The number of parameters and
the data set size needed to successfully do it, grow linearly
with the number of linear components, while still retaining
much of its interpretability.
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