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ABSTRACT

Voltage/frequency configurable processors can provide 
significant energy savings in video decoding systems due to 
their ability to dynamically adapting the frequency and 
voltage according to time-varying workloads. In this paper, 
we propose a joint voltage scaling and priority scheduling 
algorithm that decodes jobs in order of their importance 
(quality impact), such that by setting the processor to 
various power levels and decoding only the most important 
jobs, different quality and energy tradeoffs can be achieved. 
We demonstrate that our algorithm performs well in 
practical decoding scenarios, where reducing the power to 
25% of the original power can lead to quality degradations 
of less than 1.0 dB PSNR. 
 
Index Terms— Multimedia Systems, Modeling, Complexity 
Theory, Queuing analysis

1. INTRODUCTION 

Dynamic voltage scaling (DVS) allows a processor to 
dynamically adjust its operating frequency and voltage to 
time-varying workloads, which enables the system to 
optimize energy-delay tradeoffs for tasks where jobs need to 
be completed by certain deadlines [1]. As a result, DVS is a 
popular solution for delay-sensitive multimedia applications 
running on energy-constrained systems [2]. Currently, most 
DVS algorithms are used in conjunction with earliest 
deadline first (EDF) job scheduling [2] [3]; however, such 
scheduling policies may not perform well when the 
workload is high, or the system is severely energy 
constrained. In this paper, we propose a quality-adaptive 
DVS algorithm based on priority scheduling, where jobs are 
decomposed based on their importance, such that more 
important jobs are processed first. In this way, the video 
stream can be decoded at various quality levels even if the 
system energy is insufficient for decoding all scheduled jobs 
before their deadlines. Based on the priority-scheduling 
mechanism, we introduce several DVS algorithms to 
achieve graceful quality degradation under low system 
energy. 

2. PRIORITY-SCHEDULING QUEUING MODEL 

In this section, we consider a motion compensation 
temporal filtering (MCTF) video coder which decomposes a 
video sequence into a hierarchy of transform frames based 
on their dependencies and contribution to the overall video 
quality. By setting the decoding of a transform frame as a 
job, the system can organize jobs into different priority 
classes and use priority scheduling to process jobs. 
However, in order to analyze the average quality of the 
video under various processor powers, we first need to 
introduce a queuing model to determine the probability that 
jobs of different priority classes will miss their deadlines.  

2.1. Modeling Entropy Decoding Complexity as 
Memoryless “Arrivals” 
Consider a buffer that streams jobs (or frames) to the 
decoder according to a deterministic process which 
corresponds to the frame rate of the video. Before 
operations such as inverse transform (IT), motion 
compensation (MC), and fractional pixel interpolation (FI) 
can be performed, entropy decoding (ED) must first be used 
to reconstruct the average and error frames. In this section, 
we construct a queuing theoretic model for the decoding 
process by treating ED complexity as an arrival process, and 
the total complexity associated with each unit of ED 
complexity as the service time. 
  In order to determine the complexity of decoding a 
particular frame, we collected job execution times (offline) 
from a set of 11 training sequences with 16 GOPs each, 
decoded at 7 different bit rates. Based on the data, we 
investigated the complexities contributed by different steps of a 
decoding process. The total complexity for decoding a class i  
job, 1,...,i I=  in sequence seq  is given by seq

iC , where: 
 ,ED ,IT ,MC ,FI

seq seq seq seq seq
i i i i iC C C C C= + + +   (1) 

where each ,op
seq
iC , { }, , ,op ED IT MC FI , indicates the 

complexity associated with one type of decoding step for a job 
of class i . Note that in some cases, ,op 0seq

iC = . For example, the 
complexity of a top level L -frame requires only entropy 
decoding and inverse transform, while the top level H -frame 
requires motion compensation to restore the next lower level 
frames. The entropy decoding complexity, however, exists for 
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each job and interestingly, can be modeled by a shifted and 
scaled Poisson distribution (shown in Figure 1): 

 , ,
ˆseq seq seq seq

i ii ED i EDC a C b+   (2)  

where the normalized complexity distribution of ,
ˆseq
i EDC  is: 

 ( )
, ( )

!

seq
inseq

seq i
i ED

e
p n

n
=   (3)  

where n  is the Poisson bin number, 
, ( )seq
i EDp n  is the probability 

that the normalized complexity falls into bin n , and seq
i  is the 

shape parameter for the normalized complexity distribution. 
Figure 1 shows the normalized ED complexities ,

ˆseq
i EDC  for 

various L-frames and H-frames averaged over all training 
sequences.  

Due to the form for ED complexity distribution, we can 
model ED complexity as a pure Poisson distribution scaled by a 
constant number of cycles, which we call a “groups of cycles” 
(GOCs). It is a well-known fact that when ED GOCs “arrive” 
according to a memoryless process, a Poisson distributed 
number of ED GOCs will occur in any fixed time period [5]. 
Since frames arrive periodically according to a fixed frame rate, 
the ED GOCs form a memoryless arrival process.  
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Figure 1: Normalized entropy decoding complexity for various L 
and H frames in a 4 temporal level MCTF GOP averaged over 
various training sequences. 

2.2. GOC Service Time Modeling 
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Figure 2: Example of total complexity per arriving ED GOC for 
various frames in a 4 temporal level MCTF GOP. The statistics are 
averaged over several sequences. 

Since the decoding of each frame consists of more than just 
entropy decoding, for each arriving GOC, we need to 
approximate the distribution of the complexity of other steps 
(e.g. inverse transform or motion compensation) associated 
with the GOC. We modeled the service rate per GOC, by 
dividing the total complexity (in tics) associated with the 
decoding of each frame by the complexity of entropy 
decoding. Figure 2 shows examples of resulting service 
complexity distributions. 

2.3. Non-Preemptive / /1M G  Priority Queuing and 
Delay Analysis 
Based on the decomposition of jobs into arriving ED GOCs, 
we propose a DVS system that uses priority scheduling to 
process the incoming GOCs as packets. We model the 
system as a non-preemptive / /1M G  priority queuing 
system. Priority scheduling ensures that even if not all jobs 
can be processed before the display deadline, the higher 
priority jobs will be processed first, so that they are more 
likely to satisfy their deadline constraints. Effectively, this 
enables the system to gracefully adapt the quality to 
different amounts of available energy. 

Let ,i kD  be the delay of processing a GOC of class i , 
and define ,Pr{ }i k iD T>  to be the probability that a GOC 
arriving at time t  can not be processed before deadline 

it T+ . Note that in reality, all GOCs of the same job have 
the same hard deadline regardless of their arrival times t , so 
the delay bound iT  would not be fixed for every GOC of a 
job. However, considering that GOCs of the same class 
need to be processed in FIFO order to complete the job, the 
deadlines for the first GOCs in the job may be set earlier to 
accommodate the processing time delay induced on later 
GOCs. For the purpose of analysis, we approximate the 
delays iT  tolerated by all GOCs within the same class to be 
approximately equal. In order to determine the probability 
of violating the delay deadline for a non-preemptive priority 
queuing system, we first define the load on the system 
induced by priority class i  with service time ,i kS  as: 
 , ,[ ]i k i i kE S=     (4) 
Let , ,1

i
i k j kj=
=  be the total load of traffic coming from 

priority classes 1 to i , and let ,i k  be the average service 
rate for a class i  job in processor operating mode k . The 
average waiting time in the queue for priority class i  GOCs 
can then be expressed as [8]: 

 [ ] ( )( )
,

,
,1, , 1

1
E

2 1 1

I
j k

i k
j ki k i k j

W
=

=  (5) 

From the average waiting time, we can obtain an 
approximation for the probability that the waiting time 
exceeds some time t . We use the waiting time tail 
approximation to estimate the tail of the delay: 

 
{ } { }

[ ]

, , ,

, ,

Pr Pr

exp
E [ ]

i k i i k i k i

k i
k

i k i k

D T W S T

T
W E S

> = + >

+

 (6) 

Note finally that the fraction of busy time in an / /1M G  
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queuing system is ,I k . 

3. DVS ALGORITHMS FOR GRACEFUL QUALITY 
DEGRADATION

In this section, rather than servicing jobs according to their 
deadlines, we service jobs based on priority levels, such that 
a lower quality level can be achieved even if not all frames 
can be decoded. (See Figure 3 for an example concerning 3 
temporal level MCTF.) Based on this decomposition, we 
formulate and analyze a number of DVS optimization 
problems based on probabilistic delay constraints. We begin 
with a simple optimization problem, where a processor 
determines different fractions of time k to operate at 
different power levels kP , 1,...,k K= . 

Optimization Problem 1: Minimize the Average Active 
Power given an Average Video Quality  

 
1( ,..., ) 1

avg
1

1

min

. .

1

K

K

k k
k

K

k k
k

K

k
k

P

s t Q Q

= =

=

=
=

    (7) 

where:  

 ,
1

Pr{ }
I

i
k i i k i

i
Q D t

=
=   (8) 

is the average quality of the decoded sequence at power 
level kP . Here,  is a vector with components that are the 
fraction of time the processor is set to operate at power level 
kP , and i  is the quality slope parameter for priority i  

GOCs (i.e. the average quality contributed to video by a 
priority i  GOC.) as introduced in [4]. Note that /i  is 
the fraction of GOCs of priority i  received from the 
bitstream. Thus, the first constraint requires that the average 
quality of the video is at least avgQ . This problem turns out 
to be a linear programming problem, since kP  and kQ  are 
constants. We can thus solve this via the simplex method. 
However, an even simpler closed-form solution exists if we 
explicitly consider the properties of power with respect to 
quality. 
Proposition 1: If quality is a concave increasing function of 
ED complexity, and there are a finite number of 
power/frequency levels, the optimal solution to Optimization 
Problem 1 is to run the processor always at a single power 
level, or to perform time sharing between two adjacent 
power levels. 
Proof: Let Q  be a discrete random variable which takes on 
quality levels kQ  with probability k . Since power is a 
convex function of frequency [7] and complexity (and thus 
the processor frequency) is a convex function of quality [6], 
power is a convex function of the required average quality. 
For a convex quality to power function ( )P q , the 
distribution of Q  with avgE Q Q=  that minimizes the 

expected value of the function ( )E P Q  is avgQ Q=  with 
probability 1 if ( ) { }avg 1,..., KP Q P P , or else: 

 
*

* 1

k

k

Q
Q

Q +
=

with prob.

with prob.

avg *

* *1

* avg1

* *1

k

k k

k

k k

Q Q
Q Q

Q Q
Q Q

+

+

+

,  (9) 

where * *avg 1k kQ Q Q +< < . Q  then minimizes ( )E P Q , which 
gives us the solutions k  to Optimization Problem 1.  

 
Figure 3: (a) Deadline-based job decomposition and (b) Priority-
based job decomposition for 3 temporal level MCTF. The temporal 
level is indicated by the number beside the frame type. 

If we now consider the case where the processor may shut 
down during idle times and expend essentially zero energy, 
we have a different optimization problem. 
Optimization Problem 2: Minimize the Average Power 
given an Average Video Quality 

 
1( ,..., ) 1

avg
1

1

min

. .

1

K

K

k k k
k

K

k k
k

K

k
k

P

s t Q Q

= =

=

=
=

   (10) 

This problem is no longer convex. However, given that the 
optimal mode of operation should keep the system 
nonempty with high probability, the processor power should 
hover between at most a few power levels. If the solution is 
to run the processor at a nearly constant power level, we can 
determine a near optimal fixed power under complexity 

( )O K I  given an average desired video quality. 
Optimization Problem 3: Choose a minimum fixed power 

 
avg

min

. .
k

k

P

s tQ Q
    (11) 

We now propose several simple priority scheduling and power 
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scheduling algorithms for DVS. The first algorithm chooses a 
constant power based on the arrival rate and service time 
statistics by solving Optimization Problem 3 with various levels 
of avgQ . The second algorithm is the same as the first, but 
periodically purges the queue of expired jobs, thereby reducing 
the average waiting time for different classes. Finally, we 
present a combined DVS and job scheduling algorithm using 
priority scheduling with queue purging along with a last second 
power increase. Whenever a job in a class i  is within  
seconds of being expired, the system will increase the processor 
power according to the job’s priority by some ( )i , thereby 
increasing the chance of that job being decoded on time. 

Algorithm 1: Priority scheduling with last second power increase 

1. Solve Optimization Problem 3 for avgQ , initP .
2. While jobs are available, 
3.   For the highest priority class i ,

  such that the deadline of a job in class i
will expire in less than time

4.          Set ( )initP P i= + .
5.   end 

6. Process highest priority job in FIFO 
order. Record service time s .

7.   Subtract deadline of all other jobs bys .

8.   If deadline of a job j  is less than 0, 
then purge job j .

9. end 
 

4. SIMULATIONS AND RESULTS 
Table 1: Comparisons of performances of various priority 
scheduling algorithms in terms of the percentage of deadlines 
missed for various priority classes for 4 temporal level 
decomposition ( 0f  indicates the minimum processor power.). 

Jobs
decoded

(%)

Frequency 
Levels

0f  02f  03f  04f  05f  06f  

class 1 99.7 100 100 100 100 100 
class 2 67.3 99.9 100 100 100 100 
class 3 0 98.4 99.9 100 100 100 
class 4 0 0 0 99.0 99.9 100 

Priority 

class 5 0 0 0 0 0 0.01 
class 1 99.6 100 100 100 100 100 
class 2 68.1 99.9 100 100 100 100 
class 3 13.5 99.7 100 100 100 100 
class 4 0 14.3 57.5 99.6 99.9 100 

Priority 
with 

Queue 
Purging 

class 5 0 0 6.46 26.9 41.2 66.8
class 1 99.9 100 100 100 100 100 
class 2 91.2 99.9 100 100 100 100 
class 3 31.9 99.4 100 100 100 100 
class 4 0 14.0 58.4 99.6 99.9 100 

Algorithm 
1 

class 5 0 0 6.63 26.9 41.2 66.8
Based on various average power levels for the processor, we 
compared the probability of dropping jobs of different 
classes based on the strict priority scheduling policy, a 
priority scheduling policy with queue-purging of expired 
jobs, and Algorithm 1. Table 1 includes averaged results 
from many sequences encoded by 4 temporal level MCTF 

based on different processor operating frequencies. For 
Algorithm 1, we used 0(1) 1.5 (2) 3 (3) 3f= = =  for the 
first 3 priority classes. Table 2 compared the frame rates, 
energies, and quality levels achieved under different energy 
constraints, where E  denotes a normalized unit of energy 
consumed. The results show that there is only a loss in 
quality of about 1.0 dB when the power is scaled down by 
75%, which demonstrates that our algorithm gracefully 
adapts the quality to varying energy consumption. 

Table 2: Comparisons of quality-energy adaptation points 
achieved by algorithm 3 for the Coastguard and Stefan sequences. 
Alg Frame rate 

(fps):
Energy
consumed: 

PSNR (dB): 

Seq Cstgrd Stefan Cstgrd Stefan Cstgrd Stefan 

EDF 30.00 30.00 2.63E 2.41E 33.24 27.35 
1 26.48 23.67 2.15E 2.15E 32.98 27.01 

1 20.04 18.05 1.26E 1.25E 32.51 26.70 

1 16.17 15.23 0.65E 0.65E 32.23 26.48 
1 14.53 10.08 0.28E 0.29E 32.05 25.94 

5. CONCLUSIONS 

In this paper, we proposed an adaptive architecture 
combining both power and job scheduling to obtain scalable 
energy-quality tradeoffs. Our results indicated that priority-
scheduling based DVS algorithms can save a significant 
amount of energy with only a small reduction to the quality 
level. This work may be extended to multiple tasks or 
multiple processor environments for future research. 

6. REFERENCES 
[1] L. Benini, G. De Micheli. Dynamic Power Management: Design 

Techniques and CAD Tools. Kluwer Academic Publishers, 
Norwell, MA, 1997. 

[2] W, Yuan, K. Nahrstedt, S. Adve, D. Jones, R. Kravets. “GRACE: 
Cross-layer Adaptation for Multimedia Quality and Battery 
Energy,” IEEE Transactions on Mobile Computing, 2006. 

[3] A. Reddy, J. Wyllie, K. Wijayaratne. “Disk scheduling in a 
multimedia I/O system,” ACM Transactions on Multimedia 
Computing, Communications, and Applications, 2005. 

[4] A. Ortega, K. Ramchandran. “Rate-distortion Methods for Image 
and Video Compression,” IEEE Signal Processing Mag., vol. 15, 
issue 6, Nov, 1998. 

[5] R.G. Gallager, Discrete Stochastic Processes, Kluwer, Dordrecht, 
1996. 

[6] B. Foo, Y. Andreopoulos, M. van der Schaar. “Analytical 
Complexity Modeling of Wavelet-based Video Coders.” ICASSP 
’07, to appear. 

[7] T. Ishihara, H. Yasuura. “Voltage Scheduling Problem for 
Dynamically VariableVoltage Processors,” in Proc. ACM 
ISLPED, 1998, pp. 197-202. 

[8] D. Gross and C. Harris, Fundamentals of Queueing Theory, New 
York: Wiley-Interscience, 1997. 

III - 320


